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Das Wissen ist eine dünne Eisdecke über dem
kochenden Abgrund des Glaubens. Es deckt
den Glauben zu, ohne dessen Macht zu errei-
chen: Der Glaube treibt im Unterbewussten
unkontrolliert sein Wesen (...) Ein Gleichnis.
Es lohnt sich, bei ihm zu bleiben. Das Eis ist
ein Aggregatszustand des Wassers, die Frage
stellt sich, ob nicht Wissen ein Aggregatszu-
stand des Glaubens ist.

(Friedrich Dürrenmatt)
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Abstract

A new set of barotropic free oscillations of the World Ocean is computed with ex-
plicit consideration of dissipative terms and the full ocean loading and self-attraction
effect (LSA). This set contains free oscillations that did not appear in the spectra of
previous studies. Furthermore, the expansion towards longer periods (165 hours)
yields new global planetary modes. Altogether 169 free oscillations are computed
with periods longer than 7.7 hours. Of these, 71 are gravitational modes, 92 are to-
pographically controlled vorticity modes, and 6 are planetary vorticity modes. The
influence of the LSA is investigated for all three kinds of modes with respect to
changes in the periods and in the spatial structure of the sea surface elevation and
the horizontal mass transports. In particular, for modes in the semi-diurnal and di-
urnal period range, the parameterization of the LSA is analyzed.
For the free oscillations in the period range from 9 to 40 hours the corresponding
adjoint solutions are computed and used to synthesize semidiurnal and diurnal tides
of second degree. Since these free oscillations are determined with and without con-
sideration of the full LSA-effect, this study allows for a detailed analysis of the LSA
on the dynamics of ocean tides, e.g. an physical explanation is given for the induced
phase delay computed by ocean tide models. Further, the synthesis gives a spectral
composition of certain well known tidal features and pairs of free oscillations are
identified, diminishing their contribution either on a global or local scale.
Further, semidiurnal and diurnal tidal solutions of a tidal model with assimilation
of data are integrated in the procedure of synthesizing tides. This approach shifts
the expansion coefficients of each free oscillation in the synthesis of various tidal
constituents towards more realistic values and a first attempt is made to improve the
eigenfrequencies of the free oscillations through linear least square fits.



Chapter 1
Introduction

In barotropic ocean dynamics the secondary effect of ocean loading and self-
attraction (LSA) is known to be an essential part. It is often considered in a sim-
plified manner, because the full LSA-term turns the dynamical equations into an
integro-differential equation system that makes consideration of the full effect very
time consuming in numerical models. However, a recent review of the LSA-effect
recommends that ’most serious applications should use the full integral formula-
tion’ [41]. This convolution integral is defined through the so called Green’s function
of loading and self-attraction. The Green’s function are given in terms of spherical
harmonics, weighted through the degree-dependent loading Love numbers, which
are computed by an earth model considering the features of elasticity and the radial
density distribution of the earth [9].
In the application of ocean tide models including the full LSA-effect, the first com-
plete solutions were obtained by [8, 16, 1, 56]. These solutions yield the common
result that the main structure of the tidal patterns is preserved when including the
LSA-effect, but that the computed tide is generally delayed, and in certain areas
significant local modifications are found. Recent analysis of the full LSA-effect and
its parameterization in a barotropic ocean model forced by atmospheric wind stress,
atmospheric pressure, and tidal forces indicate that there are significant differences
in the magnitude of the LSA-term, depending on the time scale of the ocean re-
sponse [48]. The full consideration of the LSA-effect in circulation models has not
been realized so far, but a first investigation of a simplified consideration of the LSA
is performed by [50].
For understanding the response behavior of oceanic water masses to atmospheric
and tidal forces, knowledge of the barotropic free oscillations is substantial and
provides a spectral representation of the LSA-effect in barotropic ocean dynamics.
These oscillations consist of gravity and vorticity modes, primarily governed by the
gravity of the Earth and by the Coriolis force, respectively. They determine the re-
sponse of the ocean to tidal forces and are furthermore excited by wind stress and
atmospheric pressure.
In the last century approaches to determine the free oscillations of different kinds
of schematic basins have been developed. Howewer, in a rotating frame of refer-
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ence these solutions are not available in a closed form. A detailed representation of
the free oscillations of a rotating rectangular basin, including experimental studies,
is given by [40]. Free oscillations of the rotating Earth fully and hemispherically
covered by water, are obtained by [21] and [22], respectively. These solutions are
generalized through the consideration of the full LSA-effect by the studies of [58]
and [59], respectively.
The first numerical solutions of free oscillations for a frictionless global ocean with
realistic topography on a rigid earth were obtained by [14], [37] (hereinafter referred
to as PL1981) and [12]. [27] (hereinafter referred to as MI1989) investigated the
long period vorticity modes and the effect of bottom topography with the PL1981
model, but restricted the investigation to the Pacific Ocean. So far, analyzes of the
LSA-effect on free oscillations were made only in the abovementioned spherical and
a hemispherical model [58] and [59] Analytic solutions depicting the influence of
solely the self-attraction effect on the frequency of the free oscillations were given
by [24] and for the whole LSA-effect by [23]. All showed a negative frequency shift
due to the LSA-effect. [59] indicated that key resonances might significantly move,
which consequently changes the rate of tidal power.
A set of free oscillations of a barotropic global ocean model with realistic topog-
raphy and explicit consideration of dissipative terms was computed by [64] (here-
inafter referred to as ZAMU2005). There, the LSA-effect was introduced by param-
eterization and the full LSA-term was considered for only two modes.
With the inverse iteration method of ZAMU2005 it is not practicable to determine a
large number of normal modes when allowing for the full LSA-effect. For this rea-
son, the finite difference model of ZAMU2005 is taken as a basis and is now com-
bined with a new iteration method, the Implicitly Restarted Arnoldi Method [20].
This upgraded version of the eigenmodel is a novel and highly efficient approach to
calculate a large spectrum of normal modes of the World Ocean with explicit consid-
eration of the full LSA-effect. Hence, all of the improvements that were suggested
in the summary of PL1981 are realized in this new model. These are (i) the inclusion
of dissipation; (ii) higher resolution of the bathymetry; (iii) inclusion of additional
marginal seas (e.g. Bering Sea); (iv) inclusion of the self-attraction and loading
effect; and (v) the inclusion of the Arctic Ocean. Additionally, the new iteration
method yielded 94 free oscillations (72 topographical vorticity modes, 21 gravita-
tional vorticity modes, and one planetary vorticity mode), which were not captured
by the inverse iteration method used by ZAMU2005. Furthermore, the spectrum has
been expanded towards longer periods (up to 165h), yielding new global planetary
modes with periods between 4-7 days.
The following chapter (Chapter 2) describes the underlying theory of computing
the free oscillations of the World Ocean with explicit consideration of frictional
terms and the full LSA-effect. Further, the developed ocean model used for com-
puting the free oscillations is described. Chapter 3 gives an detailed analysis of the
computed gravitational modes and vorticity modes. Moreover the effect of LSA on
these modes is analyzed. These results are partly published in [30]. In the first part
of chapter 4 the free oscillations of the period range from 9 to 40 hours and their cor-
responding adjoint solutions are used to synthesize the most important semidiurnal
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and diurnal tides of second degree (Section 4.1), this approach is published in [31].
The second part of chapter 4 describes a first attempt combining the computed free
oscillations with the results of an ocean model with assimilation of data.



Chapter 2
Theory and Model

2.1 Theory

The barotropic free oscillations of the global ocean are defined through the lin-
earized homogeneous shallow water equations (e.g. [57]).

∂v
∂ t

+ f×v+
r′

D
v+F+g∇ζ +Lsek = 0

∂ζ

∂ t
+∇ · (Dv) = 0, (2.1)

where ζ denotes the sea surface elevation with respect to the moving sea bottom,
v = (u,v) the horizontal current velocity vector. The undisturbed ocean depth is D,
the vector of Coriolis acceleration f = 2ω sinφz, the coefficient of linear bottom
friction r′ and the gravitational acceleration g. F denotes the vector defining the
second-order eddy viscosity term (Fλ ,Fφ ) = (−Ah∆u,−Ah∆v) and (λ ,φ) a set of
geographic longitude and latitude values. Lsek is the vector of the secondary force
of the loading and self-attraction (LSA), it is derived in section 2.1.1.
In spherical coordinates this system of equations is written as:

∂u
∂ t
−2ω sinφ · v+

r′

D
·u−Ah∆Hu+

g
Rcosφ

∂ζ

∂λ
+Lsek,λ = 0 (2.2)

∂v
∂ t

+2ω sinφ ·u+
r′

D
· v−Ah∆Hv+

g
R

∂ζ

∂φ
+Lsek,φ = 0 (2.3)

∂ζ

∂ t
+

1
Rcosφ

(
∂ (Du)

∂λ
+

∂ (Dvcosφ)
∂φ

) = 0 (2.4)
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Fig. 2.1 (a) A sketch explaining the used variables z, D, and ζ : the negative z-axis is in downward
direction starting from the undisturbed sea-level (z=0), the sea surface deformation ζ is in upward
direction also starting from (z=0). The ocean depth D is the distance between the undisturbed
sea-level down to the ocean bottom. (b) left: Sea surface deformation ζ without a deformation
of the ocean bottom. right: The deformation δ of the sea bottom through mass loading. ζ0 is the
geocentric sea level . The distance from the undisturbed sea level to the ocean bottom is now D−δ .

2.1.1 Secondary Forces: The Loading and Self-Attraction Effect

External forces are e.g. tidal forces, atmospheric pressure and wind stress. They
have in common that they do not interact in the first order with the ocean dynamics
and thus are controlled independently. Against that, the secondary forces have their
origin in the dynamics of the water masses and interact with them. In this study
the focus is on the secondary forces of loading and self-attraction. The loading-
effect results from the deformation of the elastic earth due to the variations of the
vertical extension of the water column. The self-attraction is due to the gravitational
interaction of the watermasses with themselves. All in all this effect is called the
loading and self-attraction effect. This secondary force is derived in terms of the
variation of a potential:
Both components of the LSA-effect depend on the sea surface elevation ζ related
to the undisturbed sea level and to the actual ocean bottom, i.e. being defined as
the variation of the height of the water column (Fig. 2.1a). ζ is written in spherical
harmonics:

ζ =
∞

∑
n=0

ζn =
∞

∑
n=0

n

∑
s=0

Pn,s [Cn,s cossλ +Sn,s sinsλ ] (2.5)

There,

Pn,s =
(

2(2n+1)
δs

(n− s)!
(n+ s)!

) 1
2

Pn,s; δs = 2(s = 0),δs = 1(s > 0)

are the associated Legendre Functions. Cn,s and Sn,s are time dependent coefficients.
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Self-Attraction Effect

Firstly, the elasticity of the earth is neglected, in order to derive solely the expression
of the potential of the self-attraction effect. The potential of a spherical layer is given
through (Fig. 2.2):

Φ(M) = γ

∫ ∫
δKR

ρ(M′)
MM′

dS

There, δKR is a spherical layer and ρ(M′) is the area density. The distance of the
masses M and M′ to the center of the sphere is r and R, respectively. Transformation
of the reciprocal distance MM′

−1
in spherical harmonics [45] yields:

1
MM′

= (R2−2Rr cosα + r2)−
1
2 =

∞

∑
n=0

Pn(cosα)
rn

Rn+1 ,with r < R

Using the notation f (λ ′,φ ′) := ρ(M′) and considering the area elements
dS = R2 sinφ ′dφ ′dλ ′ yields

Φ(M) = γ

∞

∑
n=0

rn

Rn+1

∫ ∫
δKR

f (λ ′,φ ′)Pn(cosα)dS.

The area density is now written in spherical harmonics f (λ ,φ) = ∑
∞
n=0 fn(λ ,φ) with

fn(λ ,φ) = 2n+1
4π

∫ ∫
δKR

f (λ ′,φ ′)Pn(cosα)dS. Thus, the potential is rewritten in

Φ(M) = 4πγ

∞

∑
n=0

rn

Rn−1 fn(λ ,φ).

Fig. 2.2 The potential of a spherical layer: The mass M in the potential of the surrounding masses
M′ (Φ(M) = γ

∫ ∫
δKR

ρ(M′)
MM′

dS).
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Since the radius of the earth R is large compared to the ocean depth, for the radius r
holds r→ R and the area density can be approximated through f (λ ,φ) = ρζ (λ ,φ)
with constant distance to the earth’s center R. Finally, the potential can be written as

Φ(φ ,λ ) = g ·
∞

∑
n=0

3
2n+1

ρ0

ρe
ζn(φ ,λ ) =:

∞

∑
n=0

Φn(φ ,λ ) (2.6)

ρ0 and ρe are the mean densities of the sea water and the solid earth, respectively.
This potential describes the so called self-attraction effect. The gradient of this po-
tential is the gravitative force of the watermasses on themselves.

Loading-Effect

Hereafter it is assumed that the earth is fully elastic. Thus, the ocean bottom gets
deformed through forces acting on it. In the present study only inner forces can de-
formate the ocean bottom, external forces are excluded in the homogeneous problem
of determining free oscillations. The surface elevation ζ gives rise to two forces; on
the one hand the changing weight of the water column, on the other hand the chang-
ing gravitational attraction on the ocean bottom.
The spherical harmonic of degree n of the geocentric sea surface elevation is (ζ0)n
(compare 2.5), and the deformation of the ocean bottom is described through δ

(Fig. 2.1b).
Compared to the undisturbed sea level (ζ = 0), the additional body of water

gρζn = gρ(ζ0−δ )n

deformates the ocean bottom due to the two abovementioned inner forces. [9]
showed that the vertical displacement of the ocean bottom δn is proportional to the
vertical expansion of the water column. The factor of proportionality is h′n:

δn = h′n ·
3

2n+1
ρ0

ρe
ζn = h′nΦn/g (2.7)

Since the pressure through the loading overbalances the gravitational attraction, the
h′n are negative for all degrees n. The mass displacement through the deformation
of the ocean bottom results additionally in a variation of the potential. This can be
described by the factor of proportionality k′n:

V ′n = k′n ·Φn (2.8)

These parameters, h′n and k′n, depend on the characteristics of the elasticity of the
earth and are called the loading Love-numbers . They describe the interaction of the
ocean with the solid earth in terms of spherical harmonics.
The loading Love-numbers used in this study are taken from [10]. They determined
the Love-numbers values taking the Preliminary Reference Earth Model (PREM) [5]
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Fig. 2.3 The Green’s function depending on the angular distance a between the two points (φ ,λ )
and (φ ′,λ ′). It holds for the angular distance: (cos(a) = sinφ sinφ ′ + cosφ cosφ ′ cos(λ − λ ′)),
(Data from [10]).

as a basis. The Love-numbers of [9], he utilized the Gutenberg-Bullen-Earth-Model,
differ distinctly for large degrees n, from the above ones.

2.1.2 The Equations of Motion and the Equation of Continuity

The loading and self-attraction effect is described through the potential (2.8 and 2.6)

Φ
∗ = V ′+Φ =

∞

∑
n=0

(1+ k′n)Φn =
∞

∑
n=0

g(1+ k′n)αnζn (2.9)

with αn = 3
2n+1

ρ0
ρe

, and the displacement of the ocean bottom δ (2.7).
The secondary force is given by the horizontal gradient ∇H of this potential (2.9):

Lsek = ∇HΦ
∗ =: g∇Hζ (2.10)

There, ζ is the equilibrium representation of the secondary potential. The sea level
ζ relative to the moving sea bottom is described through the vertical displacement
δ of the sea bottom and the geocentric sea level ζ0:
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Fig. 2.4 The Love-number combination (1 + k′n−h′n)αn . The abscissa shows the degree n of the
spherical harmonic (Data from [9]). The value (1 + k′n−h′n)αn = 0.085 is marked, which is often
used for the parameterization of the LSA-effect [1].

ζ0 = ζ +δ (2.11)

Putting (2.10) and (2.11) in (2.2)- (2.4), results in

∂u
∂ t
−2ω sinφ · v+

r′

D
u−Ah∆u+

g
Rcosφ

∂ζ

∂λ
=

g
Rcosφ

∂ (ζ −δ )
∂λ

(2.12)

∂v
∂ t

+2ω sinφ ·u+
r′

D
v−Ah∆v+

g
R

∂ζ

∂φ
=

g
R

∂ (ζ −δ )
∂φ

(2.13)

To obtain a system of equations with the three state variables u, v and ζ , the spherical
harmonics ζn must be expressed through ζ . Transformation of (2.5) results in

Cn,s
Sn,s

=
1

4π

∫ ∫
ζ (t,λ ′,φ ′)Pn,s(sinφ

′)
cos(sλ ′)
sin(sλ ′) dλ

′dφ
′ cosφ

′

Finally, by substituting this into (2.12) and (2.13), the system of equations is rewrit-
ten as:

∂u
∂ t
−2ω sinφ · v+

r′

D
u−Ah∆u+

g
Rcosφ

∂ζ

∂λ
= (2.14)
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g
Rcosφ

∫ ∫
ζ (t,λ ′,φ ′)

∂G(λ ,φ ,λ ′,φ ′)
∂λ

dλ
′dφ
′ cosφ

′

∂v
∂ t

+2ω sinφ ·u+
r′

D
v−Ah∆v+

g
R

∂ζ

∂φ
= (2.15)

g
R

∫ ∫
ζ (t,λ ′,φ ′)

∂G(λ ,φ ,λ ′,φ ′)
∂φ

dλ
′dφ
′ cosφ

′

∂ζ

∂ t
+

1
Rcos(φ)

(
∂ (Du)

∂λ
+

∂ (Dvcosφ)
∂φ

) = 0 (2.16)

This is an integro-differential equation system. The function

G(λ ,φ ,λ ′,φ ′) :=
1

4π ∑
∞
n=0(1+ k′n−h′n)αn ∑

n
s=0 Pn,s(sinφ)Pn,s(sinφ ′)cos(s(λ ′−λ ))

(2.17)

contains the loading Love-numbers. This function is often called the Green’s func-
tion of loading and self-attraction. An important characteristic of this Green’s func-
tion is that its dependency on the four variables (λ ,φ ,λ ′,φ ′) can be reduced to that
on the angular distance a, given through

cosa = sinφ sinφ
′+ cosφ cosφ

′ cos(λ −λ
′).

This is possible since the Love-numbers, which are forming the basis of the Green’s
function are only depending on the degree of the spherical harmonics and not on
their order. The proof is given through the so called addition-theorem of Legendre-
polynomials ( [45], page 427):

Pn(cosa) =
n

∑
s=0

(n− s)!2
(n+ s)!δs

Pn,s(sinφ
′)Pn,s(sinφ)cos(s(λ ′−λ )) (2.18)

Putting this expression in (2.17), the Green’s function is rewritten in the form

G(a) =
1

4π

∞

∑
n=0

(1+ k′n−h′n)αnPn(cosa). (2.19)

The Green’s function, determined by the loading Love-numbers of [10], is displayed
in Figure (2.3).
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2.1.3 Energy Balance

The equations of motion (2.2- 2.4) are transformed into the following energy equa-
tion (e.g. [56])1:

∂

∂ t [
1
2

D(u2 + v2)]︸ ︷︷ ︸
Kinetic Energy

− 1
2

∂ζ

∂ t
(u2 + v2)︸ ︷︷ ︸

Correction Term

+ r′D(u2 + v2)
3
2︸ ︷︷ ︸

Dissip. Bottom Friction

+

g∇ · (Duζ0,Dvζ0)︸ ︷︷ ︸
Energy Flux

−DAh((∇u)2 +(∇v)2)+DAh(∇ · (u∇u+ v∇v))︸ ︷︷ ︸
Dissipation T hrough Eddy Viscosity

+

∂

∂ t (
1
2

gζ
2 +gδζ )︸ ︷︷ ︸

Potential Energy

=

∇ · (DuΦ
∗,DvΦ

∗)+Φ
∗ ∂ζ

∂ t︸ ︷︷ ︸
Work Done T hrough LSA−e f f ect

+ gζ
∂δ

∂ t︸ ︷︷ ︸
Work Done T hrough Bottom De f ormation

(2.20)

The terms on the right hand side of this equation, originating from the LSA-effect,
are zero in the time-mean energy budget [57].
Now, a particular free oscillation with the frequency iσ = σ1 + iσ2 and its complex
constituents u,v and ζ is considered. The real part of iσ , i.e. σ1, determines the
damping rate of the mode, with the energy decay time 1

2σ1
[64]. The eigenperiod

T2 = 2π

σ2
is given through the imaginary part σ2.

In order to evaluating in (2.20) the potential and kinetic energy contents as well as
the energy flux term, the real parts of the constituents u,v and ζ of the complex
eigenfunction are used in the form

u = |u|e−σ1t cos(−σ2t +Ψ +φu) (2.21)
v = |v|e−σ1t cos(−σ2t +Ψ +φv) (2.22)
ζ = |ζ |e−σ1t cos(−σ2t +Ψ +φζ ). (2.23)

There, Ψ is an arbitrary phase shift.
The ocean bottom deformation δ is obtained from the sea surface elevation mak-
ing use of the corresponding Green’s function and is likewise represented by the
amplitudes and phases

δ = |δ |e−σ1t cos(−σ2t +Ψ +φδ ).

1 In order to obtain energies the equation has to be multiplied by ρ .
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The Averaging Method

Considering the time-mean of a product of two periodic functions, e.g. u and
ζ (2.21)- (2.23)

Mζ u :=
1
T

∫ T

0
dt(ζ u).

Substituting the real functions and integrating over the time results in

Mζ u =
1

8π((α

σ
)2 +1)

(
1− e

−4πα
σ

)
[
2α

σ
cos(φu +Ψ)cos(φζ +Ψ)︸ ︷︷ ︸

depending on Ψ

+

σ

α
cos(φu−φζ )− sin(φu +φζ +2Ψ)︸ ︷︷ ︸

depending on Ψ

]|ζ ||u| (2.24)

The eigenfrequency has here the notation α := σ1 and σ := σ2. Obviously, the two
marked terms in the equation for Mζ u, depend on the arbitrary phase shift Ψ . Of
course, this is due to the damping factor. In case of no dissipation (α = 0) these two
terms would disappear:

M(without dissipation)
ζ u =

1
2

cos(φu−φζ )|ζ ||u|

Averaging the resulting Mζ u (2.24) over the interval (0,2π) with respect to the phase
Ψ makes it independent of Ψ :

Mζ u =
1

2π

∫ 2π

0
dΨMζ u = B · cos(φu−φζ )|ζ ||u| (2.25)

B : =
1

8π((α

σ
)2 +1)

(
1− e

−4πα
σ

)(
α

σ
+

σ

α

)

Potential and Kinetic Energy

Using (2.20) and (2.25) the time-mean of the potential and kinetic energy surrenders
to

E p = B · (1
2

ρg|ζ |2 +ρg|δ ||ζ |cos(φδ −φζ )) (2.26)

Ek = B · 1
2

ρD(|u|2 + |v|2), (2.27)

The total energy is given through:

Et = E p +Ek (2.28)
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Energy Flux

The time-mean of the two components Ju and Jv of the energy flux, is determined
through (2.20) and (2.25):

Ju = ρgD(Muζ −Muδ ) = B ·ρgD|u|(|ζ |cos(φu−φζ )−|δ |cos(φu−φδ ))(2.29)

Jv = ρgD(Mvζ −Mvδ ) = B ·ρgD|v|(|ζ |cos(φv−φζ )−|δ |cos(φv−φδ ))(2.30)

2.1.4 Parameterization of the LSA - An Analytical Approach

Considering the shallow water equations (2.1) without friction and the LSA-effect,
the so called Laplace-equations are given by:

∂vH

∂ t
+(f×v)H = −g∇Hζ (2.31)

∂ζ

∂ t
+∇H · (DvH) = 0 (2.32)

vH ·n|Γ = 0 (2.33)

With the Operator L0

L0 =
(

f× g∇H
∇H ·D 0

)
(2.34)

and with the vector w =
(

vH
ζ

)
, the above equation system (2.31, 2.32) can be

rewritten as:

∂w
∂ t

= −L0w (2.35)

The loading and self-attraction effect is now defined by a perturbation operator
δL . [23] showed with this perturbation formalism, that the variation of the fre-
quency of a free oscillation through the LSA-effect is

δσ

σ
=
−
∫

dSζLSAζ ∗∫
dS|ζ |2

·
Ep

Et
=−β ·

Ep

Et
(2.36)

where Ep/Et is the ratio of the potential energy to the total energy, σ the frequency
and ζ ∗ the conjugate complex sea surface elevation of the free oscillation deter-
mined without the LSA-effect. ζLSA is defined by the LSA-term (compare 2.17):

∇ζLSA = ∇

∫ ∫
S

ζ (t,λ ′,φ ′)G(λ ,φ ,λ ′,φ ′)R2 cos(φ ′)dλ
′dφ
′. (2.37)



2.1 Theory 17

Since ζ and ζLSA are not exactly in phase the proportional constant β , defined
through (2.36), has a complex value. However, the imagenary part is considerably
smaller than the real part (the factor is less than 0.001). Therefore β is treated as a
real value in the following. As will be shown later, the sign of β is positive and thus
the consideration of the LSA-effect results in a decrease of the frequencies of the
free oscillations. The relative magnitude of this frequency shift depends on the ratio
of potential energy to the total energy and on the factor β =

∫
dSζLSAζ ∗∫

dS|ζ |2 .

Parameterization of LSA

This β -value is the same, which [1] introduced for parameterizing the LSA-effect in
tidal models. There, the LSA-term of equation (2.37) is approximated by: [1] ob-
tained for M2 constituent β = 0.085. [33] gave different values for the most impor-
tant semidiurnal and diurnal tidal constituents (see Table 2.1) and [41] recommends
a higher value for the M2 with β = 0.12.
The LSA-term is still interactive with ζ when represented in this simple form.
Howewer, it is a massive simplification since it does mean for all Love-numbers
that (1+ k′n−h′n)αn = β (compare Fig. 2.4). Analysis of the local distribution of β

shows that there are large differences of β between the open ocean and the coastal
region [41, 48]. The values of β are small near land, and are getting large in open
ocean areas. Further, [48] introduce a local βL(λ ,φ) = ζLSA(λ ,φ)

ζ (λ ,φ) and discuss its de-
pendency on ocean depth and on latitude for different time scales generated through
various forcings (tidal, atmospheric wind, atmospheric pressure) of their barotropic
ocean model. For a detailed analysis of the β -values of the gravitational modes see
Sections (3.1.1) and (3.1.2), and of the vorticity modes see Section (3.2).

∇ζLSA ≈ β ·∇ζ (2.38)

Table 2.1 β -values (2.36) for the most important semidiurnal and diurnal tidal constituents [33].

diurnal semidiurnal

K1 0.121 M2 0.082
O1 0.115 S2 0.083
P1 0.119 N2 0.079
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2.2 Model

The physical model for the global free oscillations is described through the eigen-
value problem

−iL w̄ = σw̄ (2.39)
vH ·n|r = 0 (2.40)

here, the periodic function w(λ ,φ) =
(

vH
ζ

)
=
(

v̄H

ζ̄

)
·exp(−iσt) , with the com-

plex valued frequency iσ = σ1 + iσ2 is introduced. The operator L , derived from
the system of equations (2.14- 2.16), is

L =
(

f×+ r′
D −Ah∆H g∇H −g∇HI

∇H ·D 0

)
, (2.41)

where I is defined through I ζ =
∫

G(λ ,φ ,λ ′,φ ′)ζ (λ ′,φ ′)dλ ′dφ ′ cosφ ′.
Properly replacing the derivatives by finite differences and the integral by a finite
expression [61] makes (2.39) turn into a system of algebraic equations

(A−λ I)x = 0 (2.42)

where λ = iσ = σ1 + iσ2 represents the eigenvalue of the Matrix A with the cor-
responding eigenvector x = xe−iσt depending on space as well as on time, i.e.
x = x(t,λ ,φ).
The system of equations (2.42) has, in the present case of a spatial resolution of one
degree, approximately 120,000 unknowns. Since LSA is taken fully into account the
entries of the matrix A are generally nonzero. However, since the Green’s function
depends only on the angular distance a, symmetries in the arrangement of the en-
tries can be utilized to reduce the working memory of the model to less than 1GB
(compare equation 2.19). Taking advantage of this memory reduction, three single
free oscillations were computed with a special modification of the Wielandt Method
Wielandt Method [64] and four with the standard Wielandt method [29]. In the first
case the model was time optimized with respect to the method itself, whereas in the
latter one it was distributed with OpenMP on 8 cpus and optimized for the HLRE2.
Both approaches make use of the Wielandt Method (or inverse iteration), as de-
scribed in [13] and as originally having been developed by [55], see also [17]. Start-
ing from a first guess eigenvalue σ0, the method yields the free oscillation with the
eigenvalue λ closest to σ0. The advantage of this method is that single free oscilla-
tions are determined with comparable low computational costs due to the possibil-
ity of the above mentioned memory reduction. The main disadvantage is the time
consuming procedure when allowing for the full LSA-effect and that not all free
oscillations are captured by this method.

2 HLRE - High Perfomance Computing Centre for Earth System Research, Hamburg.
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2.2.1 The Implicitly Restarted Arnoldi Method

In the present study the Implicitly Restarted Arnoldi Method is used for solving the
eigenvalue problem (2.39). It is provided by the software package ARPACK [20].
The original Arnoldi Method [2] is an orthogonal projection method, belonging
to the class of Krylov subspace methods. In case of a symmetric Matrix A, it re-
duces to the Lanczos Method [19]. Below, only a short summary of the Arnoldi
method is given. A more comprehensive treatment of the subjects of Krylov sub-
spaces, Arnoldi factorization, and Arnoldi method can be found in [43].

The k-th Krylov subspace associated with the matrix A and the vector v is defined
through

Kk(A,v) = span{v,Av,A2v, ...,Ak−1v}. (2.43)

Obviously, it is defined through the sequence of vectors produced by the power
method (e.g. [13]). This method utilizes the fact that with k increasing the vector
Akv converges to the eigenvector with the largest eigenvalue. Like all Krylov sub-
space methods, the Arnoldi method takes advantage of the structure of the vectors
produced by the power method, and information is extracted to enhance conver-
gence to additional eigenvectors. For this purpose, the Arnoldi method determines
an orthonormal basis span{u1,u2, ...uk} for Kk(A,v). This basis is defined through
the relation

AUk = UkHk + fkeT
k (2.44)

where A ∈ Cn×n, the matrix Uk = (u1,u2, ...uk) ∈ Cn×k (has orthogonal columns),
UH

k fk = 0, ek ∈Ck and Hk ∈Ck×k is upper Hessenberg with non-negative subdiago-
nal elements. This is called a k-step Arnoldi factorization and its algorithm is shown
in Fig. 2.5. Alternatively, the factorization (2.44) can be written as

AUk = (Uk,uk+1)
(

Hk
βkeT

k

)
, (2.45)

where βk = ‖fk‖ and uk+1 = 1
βk

fk. If Hks = sθ then the vector x = Uks satisfies

‖Ax−xθ‖= ‖(AUk−UkHk)s‖= |βkeT
k s|. (2.46)

The so called Ritz-pair (x,θ) is an approximate eigenpair of A, with the Ritz-
estimate as the residual r(x) = |βkeT

k s| (assuming ‖x‖= 1).
Unfortunately, the Arnoldi Method has large storage and computational require-
ments. Large memory is used to store all the basis vectors uk, if the number of
iteration steps k is getting large before the eigenvalues and eigenvectors of interest
are well approximated through the Ritz-pairs. Additionally, the computational cost
of solving the Hessenberg eigenvalue subproblem rises with O(k3). To overcome
these difficulties, methods have been developed to implicitly restart the method [47].
This efficient way to reduce the storage and computational requirements makes the
Arnoldi Method suitable for large scale problems. Further, implicit restarting pro-
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Input (A,v)

Put u1v/‖v‖; w = Au1; α1 = uH
1 w;

Put f1← w−u1α1; U1← (u1); H1← (α1)

For j = 1,2,3, ...k−1

(1) β j = ‖f j‖; u j+1← f j/β j;

(2) U j+1← (U j,u j+1); Ĥ j ←
(

H j
β jeT

j

)
;

(3) w← Au j+1;

(4) h←UH
j+1w; f j+1← w−U j+1h;

(5) H j+1← (Ĥ j,h);

End For

Fig. 2.5 Algorithm: The k-step Arnoldi Factorization.

vides a means to determine a subset of the eigensystem. Hence, the ARPACK inter-
face allows the user to specify the number l of eigenvalues sought.
When the Matrix A is considered in the Arnoldi method its l largest eigenvalues are
determined. But in the case of the present study the interest lies in specific eigen-
values, e.g. those in the diurnal and semidiurnal spectrum. Therefore the shifted
and inverted problem (A−σ0I)−1is considered. Thus the convergence of eigenval-
ues near the selected point σ0 is enhanced. This approach is closely related to the
inverse iteration techniques (e.g. [13]). Considering this spectral transformation in
detail yields

Ax = xλ ⇐⇒ (A−σ0I)x = x(λ −σ0). (2.47)

and
(A−σ0I)−1x = xν , where ν =

1
λ −σ0

. (2.48)

Hence, the eigenvalues λ that are close to σ0 will be transformed into eigenvalues
ν = 1

λ−σ0
, which are at the extremes of the transformed spectrum. The correspond-

ing eigenvectors remain unchanged.
In case of the shifted and inverted approach of the Arnoldi Method, linear systems
of the form (A−σ0I)x = b have to be solved. The algorithms of ARPACK are pro-
vided with a so called reverse communication interface. This interface allows the
user to transfer the solution x into the algorithm, and in this way the solver can be
chosen independently from ARPACK. In the present study the LU-solver provided
by ScaLAPACK [4] is used (see next section). The LU-solver puts itself forward
since the time consuming LU-factorization of (A−σ0I) need to be performed only
once.
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2.2.2 The Parallelization with MPI

To enable the use of routines of mathematical libraries for computing linear sys-
tems, it is necessary to store the complex matrix (A−σ0I) in a general form. Thus
the advantages of the symmetries of the matrix are getting lost. Since more than
500 GB of memory are required, it is necessary to parallelize the ocean model and
distribute the matrix on different nodes. The parallization is done with MPI3, per-
fect for large problems needing access to large amounts of memory on distributed
memory architectures [46].
The linear systems are solved with a parallelized version of a LU-solver of the
ScaLAPACK software package [4]. Since the Matrix (A−σ0I) is kept preserved
during the whole iteration process of the Arnoldi algorithm, the LU-factorization,
the most time consuming part, is only performed once. The choice of MPI and the
ScaLAPACK LU-solver gives the user a high degree of freedom, in adapting the
ocean model to the features of the computer architecture. The number of CPUs and
nodes can freely be chosen, and is only restricted through the memory used to store
the matrix.

2.2.3 The Performance of the Model

The model-runs have been performed on two distinct supercomputers, the HLRE4

and the HLRS5, equipped with NEC SX-6 nodes and NEC SX-8 nodes, respec-
tively.
The number of free oscillations sought is set to l = 150 for each model-run. So

Table 2.2 Data of the performance of the fastest model-run on 12 NEC SX-6 nodes of the HLRE:
First two rows shows values from one single cpu; last row are mean global values of all 96 cpus.

Frequency Time Performance
in [s] in [MFlops]

LU-factorization 1 6872.6 6766.8
(of cpu no. 1)
LU-solver 500 444.7 1373.1
(of cpu no. 1)

Mean global values 8181.2 608.7·103

of 96 cpus

3 Message-Passing Interface.
4 HLRE - High Perfomance Computing Centre for Earth System Research, Hamburg.
5 HLRS - High Performance Computing Centre, Stuttgart.
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75 free oscillations and the corresponding complex conjugated ones are computed.
At the HLRE it is possible to run the program on 12 and 16 nodes. Each SX-6 is
equipped with 8 cpus. The overall performance is up to 609 and 632 GFlops, re-
spectively, being one of the fastest single-application running on the HLRE. The
computation time is between 2 and 3 hours, mostly depending on the actual state
of the supercomputer and on the condition of the matrix, which changes through
changing σ0 value. Although the LU-factorization is highly optimized (Table 2.2),
it alone needs more than two third of the total time used by the model (in some cases
up to 80%), the LU-solver uses 5-8%. The total memory of the model amounts to
630GBytes.
Furthermore, model-runs have been performed on the HLRS supercomputer. It is

Table 2.3 Data of the performance of model-runs on 4, 8, 16, 32 and 64 NEC SX-8 nodes of the
HLRS.

Number of nodes 4 8 16 32 64
Number of cpus 32 64 128 256 512
Real Time in [s] 11421 6850 4463 3251 2766
Performance in [GFlops] 416 737 1269 2108 3394

one of the TOP 100 Supercomputers of the world6, and ranked 48th in July 20067.
The model was distributed on up to 512 cpus (64 nodes). On this computer architec-
ture the good performance of the model is kept preserved (Table 2.3), using only 45
minutes to determine 150 normal modes, with a mean performance of 3.4TFlops.

6 http://www.top500.org/.
7 The date when these model-runs have been performed.



Chapter 3
The Free Oscillations

The free oscillations of the World Ocean on the rotating Earth consist of gravity and
vorticity modes, primarily governed by the gravity of the Earth and by the latitude
dependent Coriolis force, respectively. A total of 284 free oscillations is found in
the period range of 7.7 h to 165 h. Of these, 169 oscillations are classified as physi-
cally relevant, while the remaining 115 are considered to be spurious modes. These
spurious modes are characterized by very large amplitudes in both the horizontal
mass transport and the sea surface elevation. They are concentrated on small areas
and located mainly in bays and gulfs. Although resonances do exist in these regions,
they cannot be resolved with this model. In the following, only the physically mean-
ingful modes are considered.
All 56 modes, computed by ZAMU2005 with the parameterized LSA-term and peri-
ods between 8.03 h and 133.10 h, correspond to modes that have now been computed
with consideration of the full LSA-effect. As expected, the three single modes with
the full LSA-effect, computed with a special iteration procedure in ZAMU2005, and
the four modes calculated with the Wielandt Method by [29], have been verified in
this work with exact match (compare Section 2.2). Additionally, for an analysis of
the full LSA-effect and not its parameterization , 107 normal modes with periods
between 12h and 120h are computed without the LSA-effect.
The accuracy of all these normal modes is of the same order of magnitude as that
of those found using the inverse iteration method by ZAMU2005. The residual r
ranges from 1.24E-13 to 1.23E-10 for the calculated eigensolutions (equation 2.46),
corresponding to a correctness of the first six digits of the mantissa of σk.

3.1 Gravitational Modes

72 of the 169 determined normal modes are gravitational modes . The period of the
slowest gravitational mode is 79.18 hours and the computed spectrum covers the
period range down to 7.7 hours. In Table A.1 selected features of the gravitational
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timated (21% of Et ) for the slower one. Another interesting effect is represented by
the two corresponding modes computed with parameterized LSA-term (12.65- and
12.75-mode, ZAMU2005). Both have almost the same periods as the ones com-
puted with full LSA-term, but the characteristics of the resonances are similar to
those computed without LSA-term.
Two other modes for which the LSA-effect introduces large changes to local res-
onances are the 27.57- and the 28.20-mode (Figure 3.5). These are two gravita-
tional modes affected by a topographical vorticity mode, which is located at the
New Zealand Plateau . This vorticity-wave-trapping seems to be subject to the same
mechanism, analyzed by PL1981. The vorticity mode is concentrated at the New
Zealand Plateau where two topographical vorticity modes occur with periods 32.56
hours (Figure 5.20) and 37.92 hours. The iteration method used by ZAMU2005
did not determine any topographical vorticity mode in this area and the fastest of
PL1981 is mode 11 (38.0 h). Probably the faster mode is not resolved in PL1981
due to the lower spatial resolution. Hence, the vorticity-wave-trapping occurs at this
location for gravitational modes with longer periods in the modes of PL1981 than
for those in the present study. The strength of the trapping within the two gravi-
tational modes (27.57- and 28.20-mode) mentioned above is very sensitive to the
LSA-effect. It can be quantitatively expressed by the variation of the ratio of poten-
tial to total energy Ep

Et
, since the vorticity modes themselves have very low ratios of

around 2%. Both modes computed with the LSA-effect have a ratio between 26%
and 27% and they are strongly influenced through this vorticity mode. In contrast,
neglecting the LSA-term results in a reduced ( Ep

Et
=39%) for the faster mode (26.74 h)

and in a strengthened influence ( Ep
Et

=9%) for the slower mode (27.77 h). For the cor-
responding pair computed with parameterized LSA-term (27.66- and 28.15-mode,
ZAMU2005), both the frequency and Ep

Et
(between 23 and 25%) are similar to that

of the modes computed with the full LSA-term.
The 32.64-mode has a first-order Antarctic Kelvin Wave (AKW1) structure (see fol-
lowing section) and is the most important mode for the diurnal tides (ZAMU2005)
and for atmospheric pressure forcing (compare the EOF for the 30-36 h period band
[39]. The LSA affects mainly the period with a prolongation of 2.4 h, and the spatial
patterns of ζ and u are only slightly changed. Altogether three gravitational modes
are characterized by an AKW1 (32.64, 33.25 and 37.77 h) and all three modes are
affected by topographical vorticity modes at the Kerguelen and the New Zealand
Plateaus. The strength of this trapping is not sensitive to the LSA-effect. Figure 5.15
gives a graphical display of the 32.64-mode. Vorticity-wave-trapping is indicated by
distortions of the phase lines of the sea surface elevation in these regions. PL1981
already showed that one of their AKW1s is affected by a resonance at the Kergue-
len Plateau (Mode 15). [53] also describe an interaction between the AKW1 and
topographic modes. However, the trapping of a vorticity mode at the New Zealand
Plateau has not yet been noted, although it is clearly present in the patterns of the
diurnal tides [63, 51]).
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3.1.3 The Antarctic Kelvin Wave

A prominent feature appearing in the Southern Ocean is the Antarctic Kelvin Wave.
This wave travels in westward direction trapped by the Antarctic and and it is ac-
companied by an strong westward energy flux. The Antarctic Kelvin Waves have
orders of one, two and three (Figure 5.19), defined through the number of wave-
lengths within one cycle.
The Kelvin Waves with order one have periods of 32.64, 33.25 and 37.77 hours.
The 32.64-mode (5.15), is an important mode for the diurnal tides although it the
period is not close to the forcing periods. This is due to the large coherence of the
diurnal potential with the adjoint mode of the 32.64-mode (Section 4.1). Along the
path of the first order waves topographical trapping occurs at the Kerguelen Plateau
and the New Zealand Plateau (Section 3.1.2). The second order Antarctic Kelvin
Waves have periods of around 16 hours (16.02-mode and 16.89-mode, Figure 5.10).
These modes are neither important for the diurnal nor for the semidiurnal tides. The
third order waves are in the semidiurnal period range (10.98-mode and 11.65-mode,
Figure 5.3) and the 11.65 is significantly excited through the semidiurnal tidal po-
tential.

3.1.4 New Modes

Several new gravitational modes having not been captured by the iteration method
of ZAMU2005 are computed by means of the Arnoldi Method. Some of them with
periods in the semidiurnal and diurnal period range are described below:

Semidiurnal

The 11.98-mode (Figure 5.5) has its main energy located in the Pacific. There, it ap-
pears mainly as a Kelvin Wave around New Zealand, which is a prominent feature
of the semidiurnal tides and indeed this mode plays an important role in the synthe-
sis of the semidiurnal tides (Section 4.1). The 11.98-mode resembles the mode 38
(10.8 h, Fig.20) of PL1981 who named it the “free New Zealand Kelvin Wave”.
Another new mode which plays an interesting role in the synthesis of the semidiur-
nal tides is the 13.49-mode (Figure 5.8). Almost all energy is located in the Pacific
(92.5%), represented by a Kelvin Wave travelling along the South and North Amer-
ican coast, ending at the Aleutian Island. The patterns of this mode are very similar
to the 13.37-mode and both modes are strongly excited through the semidiurnal tidal
force. However, since they are forced with opposite phases they combine destruc-
tively on a global scale (Section 4.1).
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Diurnal

The 25.32- (Figure 5.13) and 27.19-mode (Figure 5.14) are important for the diur-
nal tides since their periods are close to that of the diurnal tidal forcing. Both are
restricted to the Pacific (more than 98% of Et ) and characterized by a single am-
phidrome. The latter is located at the equator and forms a Kelvin Wave along the
northern Pacific coast with strong resonances in the Sea of Okhotsk and the South
China Sea. There are no counterparts found in PL1981.

3.1.5 The Slowest Modes

The four slowest modes are the 41.22-, 53.21-, 64.36- and 79.18-mode (Figure 5.17
and 5.18). The ratio of potential to total Energy Ep

Et
decreases from 42.2% down to

18.6% with increasing period of the modes. Hence, the rotational character gains
the more influence the slower the mode is. All four modes are characterized by
an eastward directed belt of energy flux surrounding the world. The 53.21-mode
has its main energy in the Atlantic (45.7% of Et ). The North and South Atlantic
are co-oscillating where the sea surface elevations showing a separation through a
quasi-nodal line at the equator. Thus each ocean plays the role of a Helmholtz res-
onator with respect to the other. The same phenomenon is analyzed by PL1981 but
for a mode with the somewhat lower period of 35.8 h (mode 12). Furthermore, for
the 53.21-mode in the North Atlantic a strong topographical trapping at the Reyk-
janes Ridge occurs.
The two slowest gravitational modes, the 64.36- and the 79.18-mode, have been
classified as gravitational modes since they would not disappear on a non-rotating
Earth. However, when allowing for earth rotation they have features of vorticity
modes indicated by the low ratio of potential energy to kinetic energy. The sea
surface elevations have nearly constant amplitude and phases in the North At-
lantic, similarly to the sea surface elevation patterns of some planetary modes (Sec-
tion 3.2.2). Furthermore, the sea surface elevations in the South Atlantic, the Pacific
and the Indic are similar to those of planetary modes. Structurally the 79.18-mode
resembles mode 1 (79.8 h) of PL1981. However, it shows a uniform energy distri-
bution with a circum-global energy flux and only a weak topographical trapping
at the Falkland Plateau. In the Pacific, it is similar to the fundamental planetary-
topographic mode of MI1989 (74.4 h, see his Fig.10). Thus, these results suggest
that this mode (or even the 64.36-mode) could also be classified as the first plane-
tary mode of the World Ocean.
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3.2 Vorticity Modes

3.2.1 Topographical Vorticity Modes

In total, 91 of the 97 determined vorticity modes are topographical modes . They are
trapped by prominent topographic structures over which they focus the main part of
their total energy. They are characterized by an energy-flux gyre (see also PL1981
mode 14) and a strong modification of their relative vorticity with changing water
depth (more precisely: normal to the contours of f

h ). The behavior of the transport
ellipses is characterized by an inversion of the sense of rotation at a certain depth
contour line (e.g. Figure 5.21). The rotation is anti-cyclonic over the topographic
structure and cyclonic in deeper water, consistent with previous observations and
numerical models (e.g. [18]).
In consideration of the fact that these resonances occur in specific areas, they are
indexed by 12 different regions (Figure 3.6). Note, it is often the case that these free
oscillations comprehend resonances in more than one of these regions.
For the Arctic Ocean, comprising extensive shelf areas and the transition to the Arc-
tic Basin, the vorticity mode with the lowest period (13.74 h) exists. Altogether 15
modes have resonances in this region and are distributed to a broad period range
up to 101.22 h. Almost the whole spectrum of the calculated topographical modes
is covered by modes occurring in the region around New Zealand with the New
Zealand Plateau , the Lord Howe Rise, the Colville Ridge and the Fiji Plateau (Fig-
ure 5.20), the Pacific Antarctic Ridge and the Kerguelen Plateau (Figure 5.22). The
oscillations with their center located on the Falkland Plateau are in a similar range
between 27.18 and 92.47 hours. Under North Atlantic, resonances in the Norwegian
Basin, at the Island-Faroe Ridge, at the Rockall Plateau and at the Grand Banks of
New Foundland are summarized. These resonances are limited to low periods be-
tween 28.08 and 47.58 hours like those occurring in the Ross Sea and in the Weddell
Sea with periods between 30.13 and 40.24 hours. The Mid Atlantic Ridge is defined
by the part to the north of 20◦N including the Reykjanes Ridge (Figure 5.21) and
the part to the south of 20◦S (Figure 5.23). For resonances at the northern ridge sys-
tem the periods are widely spread from 51.78 to 132.19 hours. Since the southern
part is connected with the South-West Indian Ridge, some modes with periods over
130 hours are trapped by both topographical structures, and for the modes in both
regions a lower limit of around 80 hours exists. Oscillations with the focus of their
energy at the South-East Indian Ridge often extend far into the Indian Ocean includ-
ing the Central Indian Ridge. They have in any case periods larger than 105.74 hours
and are densely distributed up to 153.20 hours. Only a few modes do not fall under
this regional classification scheme, they occur at the Mariana Islands (106.06 h), the
Bering Sea (33.09 h), and the Gulf of Alaska (125.99 h, 129.72 h).
To analyze the effect of LSA on topographical modes, a set of 58 corresponding
modes neglecting the effect have been computed. The LSA-effect lengthens the
periods of these modes by a mean shift of 0.17 h. The small changes, compared
to the long periods, are in good agreement with the theoretical estimates of [23],
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Table 3.1 The six planetary modes in the period range 96 to 142 hours. The period T2 = 2π

σ2
,

the decay time T1 = 1
2σ1

, the period T p
2 of the corresponding mode computed with parameterized

LSA (if computed), and the ratio between potential (Ep) and total (Et ) energy contents are shown
for each mode. Further, areas relative to the ocean area are given in per cent for Indian Ocean
(Ind), Pacific Ocean (Pac), Atlantic Ocean (Atl), Southern Ocean (Ant) and the North Polar Sea
(Np) directly below the abbreviations. The five columns below these abbreviations show the total
energy contents of the corresponding ocean region relative to the total energy. The last column
shows the β -value.

No. T2[h] T p
2 [h] T1[h] Ep

Et
[%] Ind Pac Atl Ant Np β

18.7 46.6 23.2 8.5 3.0

1 96.94 96.32 88.64 11.63 31.09 41.08 25.03 2.78 0.02 0.140
2 111.22 110.83 87.58 8.13 10.43 23.74 64.18 1.55 0.10 0.119
3 113.44 78.14 6.46 0.49 96.75 1.97 0.79 0.00 0.125
4 119.65 119.42 81.28 7.67 11.26 66.82 19.86 1.99 0.06 0.132
5 136.87 80.89 5.10 10.08 80.39 6.68 2.85 0.01 0.112
6 141.66 78.73 5.57 7.45 55.51 34.91 2.11 0.01 0.116

of [15] (see their Fig.1, 120 h). The main part of the energy is located in the Atlantic
(62% of Et ). The sea surface elevation has nearly constant amplitude and phase in
the North Atlantic and a strong resonance in the South Atlantic. A resonance in
the Southeast Pacific (described later in more detail for the 119.65-mode) transports
energy through the Drake Passsage to the South Atlantic. The Indian Ocean has
constant amplitude and phase values over large regions.
The third planetary mode (113.44 h, Figure 5.26) is restricted to the Pacific and has
its main energy in the northern part, where it appears as a westward propagating
planetary wave with one wavelength. Topographical trapping occurs at the north of
the Fiji Islands. The cross equatorial structure of the propagating planetary wave and
the amphidromic point at the Gulf of Alaska suggest that this mode is a descendant
of the mode of MI1989 (see his Fig.11c) with a period of 132 h.
The planetary mode with a period of 119.65 h (Figure 5.26) appears in ZAMU2005
with a period of 119.42 h (see their Fig.12). It has a global energy distribution with
13% of Et in the Indic and Southern Ocean through topographical trapping at the
Southeast Indian Ridge. Of the total energy, 20% is located in the Atlantic, mainly
in a resonance in the middle of the South Atlantic, and 67% in the Pacific. The struc-
ture in the Pacific is similar to that of MI1989 (see his Fig.4d) with a period of 120 h,
but it appears in the 119.65-mode meridionally compressed and bounded in the east
by the East Pacific Rise. An additional resonance east of the East Pacific Rise arises
from a planetary wave with half wavelength. The energy flux (Figure 3.8) shows that
the ridge reflects the energy and, thus, is responsible for this subbasin (bounded in
the east by South America) resonance. Part of this energy is transported through the
Drake Passage in the Atlantic. It is interesting that the phase and amplitude structure
in the South Atlantic, and the amplitude structure in the Southeast Pacific, appear
in the sea surface elevations of the atmospherically forced ocean model of [38] (see
his Fig.3). But for the dynamical signal (see his Fig.4) this structure disappears.
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In the 136.87-mode (Figure 5.27), 80% of Et is located in the Pacific. In this mode,
strong topographical-trapping components exist. The strongest is in the southern
part at the Pacific-Antarctic Ridge, in the north-west part at the South Honshu Ridge
and a weak trapping at the Southeast Indian Ridge. In the Pacific this mode may cor-
respond to the mode of MI1989 with a period of 139.2 h (see his Fig.11d).
The slowest computed planetary mode has a period of 141.66 h (Figure 5.27). The
main energy is located in a strong resonance in the subbasin bounded by the East Pa-
cific Rise transporting energy through the Drake Passage in the middle of the South
Atlantic. For this region, the spatial structure is similar to that of the 119.65-mode,
but more energy is located in this region.
Recapitulating, we find that the Atlantic Ocean, with its connection to the Pacific
through the Drake Passage, plays an important role in the formation of all global
planetary modes. Furthermore, we see that some of these modes are strongly in-
fluenced by the bottom topography, either through trapping or by functioning as a
barrier.



Chapter 4
Synthesis of Forced Oscillations

The semidiurnal and diurnal tidal oscillation systems of the open ocean are mean-
while well known. This is due to many improvements made during the last decades.
On the one hand, missing physical effects were included, e.g. the LSA-effect
(e.g. [1, 56]) and the parameterization of the internal wave drag [7]. On the other
hand, the assimilation of tidal sea surface elevations extracted from satellite altime-
try (TOPEX/POSEIDON) brought about very accurate tidal solutions (e.g. [63]) .
To understand the tidal oscillation system, the tidal solution can be represented spec-
trally. This attempt describing ocean tides by synthesizing free oscillations, was
first made by [35]. His free oscillations were obtained by solving the homogeneous
Laplace tidal equation without frictional terms and loading and self-attraction ef-
fects (PL1981). Dissipation was included into the synthesis with a special proce-
dure [34]. The large scale features of the resulting synthesized solutions were in
good agreement with complete tidal model solutions. Hence, further investigations
of the spectral composition of the semidiurnal and diurnal tides were made [35].
Another spectral composition was made by ZAMU2005. They used a simple least
squares approximation to determine the contribution of individual free oscillations
to the tidal patterns.
In this chapter a general procedure of the synthesis of forced oscillations is derived
(Section 4.1.1). The set of free oscillations is computed with explicit considera-
tion of frictional terms and the full LSA-effect (Chapter 2). For the synthesis, the
solution of the corresponding adjoint eigenproblem is necessary. The synthesis pro-
cedure allows for an analysis of the strength and the phase of each normal mode in
respect to each semidiurnal and diurnal tidal constituent. Herewith, the LSA-effect
on the tidal dynamics is investigated (Section 4.1.2), explaining, e.g. the phase de-
lay induced by the LSA in tidal models and the role of destructive interference of
certain free oscillations. Furthermore, following the work of [35], various features
of some semidiurnal and diurnal tidal oscillation systems are spectrally analyzed
(Section 4.1.3).
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4.1 Tidal Dynamics and the Influence of LSA

4.1.1 The Procedure of Tidal Synthesis

Theory

The tidal equations are written in the general operator notation;

∂w
∂ t

+L w = F̃

w = (ζ ,u,v), (4.1)

where ζ is the sea surface elevation and u = (u,v) is the horizontal velocity vector.
F̃ is the external forcing term and the operator L represents the tidal dynamics. The
decomposition of F̃ into its spectral constituents Fe−iσF t with frequency σF yields:

(L − iσF)wF = F (4.2)

with the partial tide w′F = wF e−iσF t . Forced tidal oscillations wF can be expressed
through a superposition of free oscillations vk

wF =
∞

∑
k=1

ak ·vk. (4.3)

The ak are the expansion coefficients and v′k = vke−iσkt are the eigenfunctions, de-
fined through the homogeneous equation

(L − iσk)vk = 0. (4.4)

The eigenfrequencies σk are complex valued, iσk = σk,1 + iσk,2, with the oscillatory
σk,2 and the damping part σk,1.
The determination of the expansion coefficients in (4.3) requires knowledge of the
eigenvectors v̂k of the adjoint eigenproblem:

̂(L − iσk)v̂k = 0. (4.5)

In case of no dissipation the [?] v̂k are the complex conjugated of the corresponding
eigenvectors vk. The addition of dissipation makes the operator L non self-adjoint
and thus the [?]s have to be determined separately.
With an arbitrary scalarproduct 〈〉, the adjoint Ô of an operator O is defined by
〈Ow,w〉 = 〈w, Ôw〉, w and w denoting arbitrary vector functions. The eigenso-
lutions of the two above mentioned eigenproblems (4.4) and (4.5) are forming
biorthogonal systems of eigenfunctions {vk}k=1,∞ and {v̂k}k=1,∞. Properly normal-
ized, these eigenfunctions satisfy the condition
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0 = 〈L vk, v̂l〉−〈iσkvk, v̂l〉= 〈vk, L̂v̂l〉−〈iσkvk, v̂l〉=
〈vk, îσl v̂l〉−〈iσkvk, v̂l〉= 〈vk, v̂l〉(iσl− iσk)

⇒ 〈vk, v̂l〉= δkl , (4.6)

with the Kronecker symbol δkl .
Substituting (4.3) into (4.2) we obtain

(L − iσF)
∞

∑
k=1

ak ·vk = F

⇒ 〈
∞

∑
k=1

i(σk−σF) ·ak ·vk, v̂l〉 = 〈F, v̂l〉, (4.7)

herein deriving the second relationship (4.4) is used and multiplied scalarly by an
arbitrary adjoint eigenvector v̂l . Taking into account the orthogonality relation (4.6),
we finally obtain for the expansion coefficient:

ak =
1

i(σk−σF)
· 〈F, v̂k〉 (4.8)

Thus, with the knowledge of the eigenvectors {vk}k=1,∞ and {v̂k}k=1,∞, and the
related eigenvalues {σk}k=1,∞, every forced oscillation can be obtained by super-
posing. The magnitude and phase of the complex expansion coefficients ak depend
on the ’resonance depths’ Rk := 1

i(σk−σF ) and on the ’shape factor’ Ck := 〈F, v̂k〉. The
latter reflect the spatial coherence of the forcing field with the adjoint eigenvectors.
Both, the resonance depths and the shape factors , are determining the strength and
phase of the excitation of the free oscillations.
The terms ’resonance depth’ and ’shape factor’ are chosen according to the nota-
tions of [23] and [36], respectively. Important to note is that these two earlier works
discuss the tidal dynamics in terms of the Laplace tidal equation without dissipation
and LSA-effects. This makes further simplifications possible and consequently, the
formulae of the resonance depths and the shape factors differ from those derived
above.

Model

The barotropic free oscillations of the World Ocean are computed with explicit con-
sideration of dissipative terms and the full LSA-effect. The equation (4.4) is dis-
cretized with a finite difference model (Section 2.2), leading to the algebraic form

(A− iσk)xk = 0, (4.9)
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with the NxN-Matrix A and the vector of unknowns (ζ ,u,v) = x.
When defining the scalarproduct1 by, 〈x,y〉= ∑

N
i=1 xi ·y∗i , the adjoint of the matrix A

is the conjugate complex and transposed matrix, AT∗:

〈Ax,y〉=
N

∑
j=1

N

∑
i=1

ai jxiy∗j = 〈x,AT∗y〉 (4.10)

where the * denotes the conjugate complex. Finally, the adjoint equation can be
written as:

(AT∗+ iσ∗k )x̂k = 0. (4.11)

Normally the scalarproduct of vectors which are defined on a global grid, is defined
as a Riemann sum and takes the area elements dA into account. The definition of the
scalarproduct affect the adjoint of the matrix A and thus the adjoint eigenvectors x̂k,
as well. However, the primary interest of this study is not in the adjoint eigenvectors
but in the expansion coefficients (4.8), which are independent of the choice of the
scalarproduct. For the analysis of the expansion coefficients it is important to choose
an appropriate normalization of the eigenvectors (see the following section).
The two eigenproblems of equation (4.9) and (4.11) are solved in the period range
from 9 to 40 hours. As expected, the eigenfrequencies of these two eigenproblems
are the same. The residual r of the eigensolutions of (4.9) and (4.11) is defined
through r = ‖Axk−σkxk‖2 and r = ‖AT∗x̂k + iσ∗k x̂k‖2, respectively. The values of
r are lower than 1.3E-10, corresponding to a correctness of the first six digits of
the mantissa of σk [64]. Further, the accuracy of the orthogonality relation (4.6)
is essential in the derivation of equation (4.8) of the expansion coefficients. This
relation is fulfilled in the numerical model with an error lower than err = 5 ·10−7.

Analysis

The tidal synthesis is performed for eight tidal constituents of second degree, four
semidiurnal (K2, S2, M2, N2) and four diurnal (K1, P1, O1, Q1) ones. The tidal force
is (e.g. [3]):

F = (0,Fu,Fv)

Fu =
1

Rcosφ

∂

∂λ
Φ

Fv =
1
R

∂

∂φ
Φ , (4.12)

where the potential of second degree is defined as

Φ(λ ,φ) = γ2KGs
2(φ)eisλ , (4.13)

1 It is postulated that equation (4.9) is dimensionless, which is possible with a simple matrix trans-
formation.
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with γ2 = 1 + k2 − h2. There, k2 and h2 are the nonloading Love numbers, K is
a specific coefficient for each partial tide, and s = 2 or 1 for the semidiurnal or
diurnal potential, respectively. The geodetic functions Gs

2(φ) are given through the
associated Legendre functions:

G1
2(φ) = sin2φ

G2
2(φ) = cos2

φ . (4.14)

The tidal solution wF of equation (4.2) would be exactly equal to the synthesized
tide when using the complete spectrum of N eigenfunctions, but only the eigenfunc-
tions within the semidiurnal and diurnal spectrum are used for the synthesis. Thus,
the synthesized tide w̃F differs from the tidal solution wF . However, as it is shown
below, the difference between these two solutions is small.
In order to make the expansion coefficients ak independent of scale factors of the
tidal potentials, equation (4.3) is transformed, by using (4.8, 4.13), in:

w̃F = ∑ak ·vk = γ2K ∑a′k ·vk. (4.15)

Furthermore, the eigenfunctions are normalized:

vk =
vk√∫

S ζk ·ζ ∗k dA ·A−1
O

=: nk ·vk, (4.16)

where AO is the area of the ocean domain. Finally, the synthesized tide can be written
as

w̃F = γ2K ∑
a′k
nk
·vk = γ2K ∑ak ·vk = γ2K ∑CkRkvk (4.17)

with the shape factor Ck := Ck
nk·γ2K being independent of scale factors.

The purpose of this section is not to get a direct improvement of the quality of
tidal solutions, but to understand the role of the normal modes in the composition
of tidal oscillations and to analyze the effect of the LSA. The synthesized M2-tide
(Figure 4.1) can be compared with the solution of tidal models, e.g. that of [62] who
utilized an equivalent discretization, the same boundary conditions and frictional
parameterization and no data assimilation but the parameterized LSA-effect (see his
Figure 1). There is a very good accordance between these two tidal solutions. All
amphidromies are nearly at the same positions and also the amplitudes are quite
similar. Thus, it is warranted that the M2-tide can be sufficiently described by the
superposition of the normal modes in the period range from 9 to 40 hours. The same
applies to the other tidal constituents (not shown here).
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complex value, both the intensity and the phase of the excited oscillation is influ-
enced. The changes in the intensity were already discussed by [60]. He used an an-
alytical hemispheric ocean model with the result that ’for individual near-resonance
tidal constituents the rate of tidal power, e.g., can be reduced or enhanced by more
than a factor two’. For the tidal oscillations of the World Ocean it will be discussed
in more detail in the following subsections.
An already known, but so far not explained effect of the LSA on tidal dynamics, is
that the tides are generally getting delayed [1, 56] when allowing for LSA. The ex-
planation for this property is the LSA induced frequency shift, as well. This can be
realized by writing the complex resonance depth as Rk = Rkeiϕk ; then Rk depicts the
intensity and ϕk the phase given through Rk. Approximately, the phase shift induced
by the LSA can be written as (Appendix 5):

δϕk = arctan

 σ
(noLSA)
k,2 −σ

(LSA)
k,2

σk,1

(
1+(σ (noLSA)

k,2 −σF)(σ (LSA)
k,2 −σF)/σ2

k,1

)
 (4.18)

The delay gets large if both modes, with and without LSA, have frequencies close
to the forcing frequency ((σ (noLSA)

k,2 −σF)(σ (LSA)
k,2 −σF) is small) and the frequency

shift σ
(noLSA)
k,2 −σ

(LSA)
k,2 induced by the LSA is large. This frequency shift is positive

for all gravitational modes of the World Ocean since the periods of all these modes
are lengthened through the LSA (Chapter 3). Thus, the phase shift is positive as well.
For some near-resonant modes the phase delay amounts up to 92 and 65 degrees for
the semidiurnal and diurnal tides, respectively (Figures 4.3 and 4.7).

Semidiurnal Tides

The potential of the semidiurnal tides is given by (4.13). The shape factors of each
normal mode are equal for all semidiurnal tides of second degree, since they are
independent of frequencies and of scale factors. The effect of LSA on the shape fac-
tors is quite large for six of the normal modes in the semidiurnal spectrum. These
six modes have periods of 12.36, 12.55, 12.67, 12.76, 13.37, and 13.49 hours (Fig-
ure 4.2). The effect of LSA is largest for the 13.37- and 13.49-mode (Figure 5.8).
There, the shape factors are reduced through LSA by a factor 6.9 and 4.6, respec-
tively. These two modes are similar in their spatial patterns of ζ and u. In both cases,
whether LSA is considered or neglected, the two modes are forced in opposite phase
and consequently weaken each other. Although the 13.37- and 13.49-mode are much
less excited than the corresponding pair computed without LSA (12.90- and 12.92-
mode) the resulting effect is small, since they diminish their combined contribution.
Quantitatively, we can express this with an ’effective’ expansion coefficient ae f f .
This coefficient is defined for the k-th and the l-th mode as akvk +alvl = ae f f ve f f ,

with the constraint
√∫

S ζe f f ·ζ ∗e f f dA = 1 (see also (4.16)). The ratio |ae f f |
|ak|+|al |

is a
measure for the strength of the interference (1=full constructive interference, 0=full
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ZAMU2005 and PL1981 and thus, are not included in their tidal analysis. Both
are playing an important role in the formation of the diurnal tides in the North Pa-
cific. There, they appear as a Kelvin Wave along the North Pacific Coast. Moreover,
the 21.97-, 26.20-, 27.57-, 28.20-, and 32.64-mode contribute to this Kelvin Wave,
where the 27.57- and the 28.20-mode weaken the amplitude. In the North Pacific,
the latter ones are nearly in phase, but in the South Pacific, namely at the New
Zealand Plateau, they are in opposite phase (Figure 4.11). There, these two modes
are affected by a topographical vorticity mode (Section 3.1.2). Obviously, they mu-
tually diminish their contribution to the vorticity mode at the New Zealand Plateau.
However, the topographical vorticity mode keeps preserved in the patterns of the
diurnal tides, since the AKW1 (via the 32.64-mode) is also affected by this vorticity
mode (see Section 3.1.2)
In the Indian Ocean and the adjacent Southern Ocean a single amphidrome appears
in the tidal patterns of O1 and Q1, located at approximately 30◦S. In case of K1
and P1 this amphidrome is shifted to 50◦S, and an additional amphidrome appears
at the equator. All free oscillations with periods longer than 23 hours have a single
amphidromic point in the Indian Ocean. The 19.80-mode (Figure 5.11) has three
amphidromic points instead. Thus, this mode is obviously the main reason for the
amphidromic point near south of India, which appears in the K1- and P1-tide. This
hypothesis is corroborated by the fact that the second amphidrome disappears in
the synthesis of the K1-tide when neglecting the 19.80-mode. Interesting to note is
that tidal ocean models with assimilation of satellite data predict two amphidromic
points in the patterns of O1 in the Indian Ocean (e.g. [62]), as well.
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4.2 Integration of the Solutions of a Tidal Model with
Assimilation of Data

The assimilation of tidal sea surface elevations extracted from satellite altimetry
(TOPEX/POSEIDON) provided means to improve the solutions of tidal ocean mod-
els and analyze the failure of free tidal models in terms of the features of dynamical
residues (e.g. [63, 6]).
So far, a method to improve the free barotropic oscillations of the World Ocean
through assimilation of data is not known. The main problem is that for periodically
forced ’free’ oscillations no measurements are available. In case of a periodical forc-
ing the free oscillations adapt the frequency of the forcing. Thus, the forced oscilla-
tion results as a composition of inseparable free oscillations. In case of stochastically
forced free oscillations a few measurements of single free oscillations are available,
since the eigenfrequency keeps preserved [28].
In this section the focus is on the gravitational free oscillations forced by the semid-
iurnal and diurnal tidal potential. [11] presented a method to determine the period
and the damping rate of a tidally forced (near-resonant) normal mode in the Bay
of Fundy/Gulf of Maine system, by using records of sea level of a few semidi-
urnal tides at different locations. A theoretical discussion of this approach is given
by [52]. Similarly, [42] estimated periods of free oscillations responsible for the res-
onant third-degree diurnal tides in the North Atlantic. Recently, the method of [11]
was further developed by [49] in order to determine the frequency and the damping
rate of a non-resonant forced free oscillation in the Juan de Fuca Strait. All these
approaches have in common that the response of the system is largely in one mode
or at most in two modes.
The purpose of the present study is to combine the results of a tidal model assim-
ilating satellite data [63], hereinafter referred to as ZA2000) with that of an ocean
model determining the barotropic free oscillations of the World Ocean (Chapter 3).
For this combination the synthesis procedure derived in Section 4.1 is utilized and
two distinct methods are developed to extract information out of the results of the
tidal model. On the one hand a method is derived to directly obtain improved ex-
pansion coefficients for the synthesis of tides. On the other hand the tidal solutions
are used for nonlinear least squares fits in order to obtain more realistic estimates of
the eigenfrequencies of some free oscillations in the semidiurnal and diurnal period
range. An accessory parts of the latter method is an adjustment of the corresponding
adjoint eigenfunctions.

4.2.1 New Expansion Coefficients

Every periodically forced oscillation wF can be expressed through a superposition
of free oscillations vk (Section 4.1, equations 4.3 and 4.8):
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wF =
∞

∑
k=1

ak ·vk (4.19)

ak =
1

i(σk−σF)
· 〈F, v̂k〉 (4.20)

with the expansion coefficients ak and the eigenfrequency σk of the k-th free oscil-
lation vk, the frequency σF of the external forcing and the corresponding adjoint
eigenfunction v̂k.
Assuming now that the forced oscillation is known, e.g. the solution w(a)

F of a tidal
model with assimilation of data. Multiplying (4.19) scalarly with v̂l and using the
orthogonality relation (4.6) leads to the estimates of the expansion coefficients

a(a)
l = 〈w(a)

F , v̂l〉. (4.21)

In doing so, the main assumption is that the free oscillations of the oscillation sys-
tem described through w(a)

F , can be approximated to the first order by those of
the barotropic ocean model. The tidal solutions w(a)

F used in this study are from
ZA2000. Their bathymetry and the one degree finite difference discretization is ex-
actly the same, which is used for computing the biorthogonal system of eigenfunc-
tions used in the present study. Since the solutions of tidal models with assimilation
of data are differng only in some details [44], it is expected that the following anal-
yses are independent of the choice of tidal model solutions.

For the above mentioned estimation of the expansion coefficients, four semidiur-
nal (K2, S2, M2, N2) and four diurnal (K1, P1, O1, Q1) tidal constituents are available.
For all these constituents the estimates of the expansion coefficient a(a)

k are com-
puted and are shown in Figures 4.15 and 4.22. Further, the syntheses of the tides are
performed by means of the ’new’ expansion coefficients a(a)

k

w̃(a)
F = ∑a(a)

k ·vk. (4.22)

Synthesis of tides

In Figure 4.12, the tidal patterns of the M2-tide of the new synthesized M2-tide w̃(a)
F ,

of the synthesized M2-tide w̃F of Section 4.1 and the one obtained by ZA2000 are
shown.
Generally speaking, the assimilation of data compensates the overestimation of the
amplitudes of the tides in free tidal models (e.g. [62]). This correction appears in the
synthesized M2-tide, as well, when using the new expansion coefficients a(a)

k . It ap-
pears mainly as a reduction of the amplitudes, e.g. of those of the equatorial Pacific
3/2 transverse half-wave or those of the whole Atlantic. Further, the corrections of
the amphidromic structure in the North Pacific, brought about by the assimilation
of data, is well displayed through the new synthesized tide. However, the disappear-
ance of the amphidrome south of Australia is not caught by this synthesis, but is
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obviously initiated. The existence of this amphidrome as a fully developed one is
attributed to the roughly resolved bathymetry of the one degree ocean model. [54]
showed that the disappearance of the amphidrome south of Australia is very sensi-
tive to the choice of the bathymetry and its resolution. Following this line of thoughts
yields that this amphidrome would disappear in the patterns of the relevant free os-
cillations, as well, when refining the gridsize and using an appropriate bathymetry.
Consequently, in this case it would also disappear in the patterns of the synthesized
M2-tide. The disappearance of the amphidrome in the Southern Ocean north of the
Ross Sea, as a consequence of assimilating data, is not sufficiently represented by
the synthesized tide, as well. However, it is shifted correctly in southward direction
towards Antarctica, when using the new expansion coefficients.
As a representative of the diurnal tides, the tidal patterns of the O1, are shown in
Figure 4.13, as obtained by the tidal model of ZA2000 and through the two syn-
thesizing methods (of Section 4.1 and that of the present Section). The amplitude
reduction of the Antarctic Kelvin Wave through assimilation of data is well repre-
sented in the new synthesized tide, as well as the appearance of an amphidrome
south of India. Further, the assimilation of data brought about a shift of the South
Indian amphidrome in south-west direction. This shift appears as well in the new
synthesized O1, but it is not large enough. In the equatorial Pacific the developing
of a northward propagating wave along the American coast appears in the synthe-
sized tide when using the newly obtained expansion coefficients, consistent with
the result of ZA2000. The amphidromic system of the Atlantic north of the equator
comes into existence but is not fully marked in the synthesized tide compared to
the results of the tidal model. In the South Atlantic, the cyclonically rotating single
amphidrome is delayed by around 45 degrees and slightly shifted eastward resulting
in a north-easterly propagating wave in the equatorial region, according to the tidal
model of ZA2000.

4.2.2 New Frequencies and Adjoint Eigenfunctions

An estimate of the frequency of the k-th free oscillation and of the adjoint eigenfunc-
tion v̂k, can be obtained by minimizing the difference between (4.20) and (4.21), i.e.
the function

Q(σ (a)
k , v̂(a)

k ) =
8

∑
pt=1

(
1

i(σ (a)
k −σF,pt)

· 〈Fpt , v̂
(a)
k 〉−〈w

(a)
F,pt , v̂

(a)
k 〉

)2

+
N

∑
i=1

(
v̂(a)

k,i − v̂k,i

)2
+
(

σ
(a)
k −σk

)2
. (4.23)

There, v̂(a)
k and σ

(a)
k are the estimates of the k-th adjoint eigenfunction v̂k and fre-

quency σk, respectively, and pt = 1,2, ...,8 stands for the eight partial tides, which
are available for this analysis. The two latter terms of equation (4.23) are appended
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in order to keep the estimates close to the original solutions of v̂k and σk. This is a
nonlinear least squares problem with N+1 complex unknowns. In the present study
the nonlinear least squares problem is divided into two subproblems: First, a non-
linear one with one complex unknown, namely the frequency σ

(a)
k :

Q1(σ
(a)
k ,ε) =

8

∑
pt=1

(
1

i(σ (a)
k −σF,pt)

· 〈Fpt , v̂ε

k〉−〈w
(a)
F,pt , v̂

ε

k〉

)2

+
(

σ
(a)
k −σk

)2
(4.24)

and a linear one to determine the N complex unknowns v̂(a)
k

Q2(v̂
(a)
k ,ε) =

8

∑
pt=1

(
1

i(σ ε
k −σF,pt)

· 〈Fpt , v̂
(a)
k 〉−〈w

(a)
F,pt , v̂

(a)
k 〉
)2

+
N

∑
i=1

(
v̂(a)

k,i − v̂k,i

)2
, (4.25)

there ε = 1,2, ... denotes the iteration step. The algorithm is shown in Figure 4.14.
To solve the linear problem (4.25), the Conjugate Gradient Least Squares method

Input (σk, v̂k)
Put σ1

k = σk
For j = 1,2,3, ...

(1) Minimizing:Q2(v̂ j
k,ε = j)

(2) Minimizing:Q1(σ
j

k ,ε = j)
(3) σ

j+1
k = σ

j
k , v̂ j+1

k = v̂ j
k

End For

Fig. 4.14 Algorithm: Frequency and adjoint eigenfunction estimation.

(CGLS) described in [32] is used. The nonlinear problem (4.24) is solved with
the Levenberg Marquardt Algorithm [25]. This analysis is only suitable for near-
resonant free oscillations with large expansion coefficients. The minimization of
(4.24) and (4.25) is performed for selected modes in the semidiurnal and in the di-
urnal period ranges. The results of the frequencies σ

(a)
k are shown in Table 4.1 and

4.2. The residues E, defined through

Ek =
8

∑
pt=1

(
1

i(σ (a)
k −σF,pt)

· 〈Fpt , v̂
(a)
k 〉−〈w

(a)
F,pt , v̂

(a)
k 〉

)2

(4.26)

are given in the last column. Further, the associated resonance curves given through
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Aσk(σ) =
1

i(σk−σ)
, (4.27)

are plotted for a few modes, with σk being the original eigenfrequency and σ
(a)
k

the new one. Additionally, in these figures the values P(a)(σF,pt) =
〈w(a)

F,pt ,v̂
(a)
k 〉

〈Fpt ,v̂
(a)
k 〉

and

P(σF,pt) =
〈w(a)

F,pt ,v̂k〉
〈Fpt ,v̂k〉

are marked. P(σF,pt) illustrates the deviation of the expansion

coefficients obtained through (4.21) from the original values (4.20) and P(a)(σF,pt)
shows these values after minimizing the function (4.23).

4.2.3 Results

Semidiurnal Tides

This new approach of synthesizing tides yields in case of the two semidiurnal forc-
ings of K2 and S2 that almost all expansion coefficients are too large, which means
that their contributions are overestimated. In case of the tidal constituents M2 and
N2 the modes with periods greater than 12.5 hours have too large expansion coeffi-
cients, as well. In Figure 4.15 the absolute values of the expansion coefficients of all
modes in the semidiurnal period range are given. The difference between the esti-
mated a(a)

k and the expansion coefficients ak of Section 4.1 are shown in Figure 4.16.
Further, least squares fits as described in the previous section, have been performed
for selected modes (Table 4.1).
The expansion coefficients of the 11.65-mode are nearly unchanged for M2 and N2
and somewhat reduced for K2 and S2. However, the relative influence of this mode
is enhanced, especially for the K2- and S2-tides, due to the fact that the two domi-
nant modes (11.77- and 11.89-mode, see below) are by far stronger weakened. The
least squares fit yields a somewhat reduced period of 11.4 h and a nearly halved
decay time, amounting to 37 hours. The estimated ζ -values of the adjoint mode v̂(a)

k
are shown in Figure 4.17 and it can be recognized that the most significant changes
occur in the Pacific and in the adjacent Southern Ocean.
The influence of the 11.77- and 11.89-mode, the two dominant modes for the K2-
and S2-tides, is strongly reduced in the solutions of ZA2000. For M2 the influence
keeps nearly preserved and for N2 it is enhanced. Figure 4.18 shows the resonance
curve of the 11.77-mode. The resonance curve A

σ
(a)
k

(σ) is flattened due to the re-

duction of the damping rate from 26 hours to 13 hours and the period is nearly
unchanged.
The 12.36-mode gains influence for the two slower tidal constituents, and for S2 and
K2 the influence remains unchanged. The least squares fit yields an enlarged period
of around 12.8 hours and the decay time is roughly doubled to around 48 hours.
The resonance curve (4.19) shows that the least squares fit predominantly changes
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is solely dominant in contrast to the free model version; there the 26.20- and 27.19-
mode are together the dominant modes.
The least squares fits of function (4.23) for selected modes in the semidiurnal range,
yield period shifts between 0.06 and 0.42 hours and very large shifts of up to 26
hours for the damping rates. The adjustment of the adjoint eigenfunction of the
12.66-mode through the least squares fit reproduces the disappearance of the am-
phidrome south of Australia, as it is obtained by tidal models with assimilation of
data. However, it is the adjoint solution and does not represent the contribution of
the 12.66-mode to the tidal pattern. But the similarities of the 12.66-mode with its
corresponding adjoint mode suggest that there is a connection between the disap-
pearance of the amphidrome in semidiurnal tides with that one occurring for the
adjoint 12.66-mode. The shifts of the periods of the modes in the diurnal range are
all positive. They are very large amounting up to 4 hours.

4.2.5 Discussion

Using the new expansion coefficients influenced by tidal data, the synthesis of the
tides yields considerably improved results as compared to those of Section 4.1.
Obtaining improved eigenfrequencies and adjoint eigenfunctions by using data of
eight partial tides, as described in (4.2.2), is regarded as a first attempt. In particular
in view of the small number of partial tides involved and the preliminary treatment
of the nonlinear least squares problem, in fact, the frequency shift resulting from
this attempt are questionable large, especially those of the damping rates. Further,
the adjustment of the adjoint eigenfunction yields promising results only for one
mode.
However, when further developing the presented method in different directions, this
attempt to improve the description of the global free oscillations by means of addi-
tional data deserves being pursued.



Chapter 5
Conclusion

The objective of this study was to compute a large spectrum of free oscillations of
a linear, barotropic, one degree global ocean model with explicit consideration of
dissipative terms and the full LSA-effect. Concerning the LSA-effect in tides quali-
tative results are available for quite some time, while corresponding results for free
oscillations were missing. The basic task consisted in introducing the LSA-effect in
such a way that the resulting large scale eigenvalue problem would become accessi-
ble when applying a proper mathematical method.
It turned out that this task could be coped with by utilizing the Implicitly Restarted
Arnoldi Method and implementing it in a specific way on a supercomputer. The
ocean model is constructed to run parallel on a large number of CPUs of supercom-
puters with a shared memory distribution. The parallelization is required, to allow
for the usage of the large amount of memory, needed for this kind of eigenvalue
problem. With the developed ocean model the highly efficient computation of large
spectra of free oceanic oscillations, with the full LSA-effect included, is enabled.
Thus, the LSA-effect, which so far appears to be the greatest unknown left in the
barotropic free oscillation behaviour of the open ocean, can now be better under-
stood and quantitatively estimated. The following analyses have been performed:
A large spectrum of free oscillations has been computed applying the above men-
tioned global ocean model including the full LSA-effect and dissipative terms. To
clarify the LSA-effect on barotropic ocean dynamics, an additional spectrum of free
oscillations not influenced by LSA has been determined. This study of the effect of
LSA on gravitational and vorticity modes of the World Ocean provides new insights
into its influence on the eigenfrequency and on the fields of current velocity and sea
surface elevation. Further, this study explains the difficulties with the parameteriza-
tion of the LSA-effect in barotropic ocean models forced by tides, wind stress, and
atmospheric pressure, since it turns out that the parameterization clearly depends for
the gravity modes on the respective time scale. Furthermore, the approach by means
of the Arnoldi Method yields a new group of free oscillations establishing a dense
spectrum of topographical modes for periods longer than 13h. The extension of the
spectrum towards periods longer than 4 days and up to 6.6 days reveals new global
planetary modes and one planetary mode restricted to the Pacific Ocean.
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For the free oscillations in the period range from 8 to 40 hours the corresponding
adjoint solutions are also computed, in order to obtain a biorthonormal system of
eigenvectors. A general procedure is derived to synthesize four diurnal and four
semidiurnal tidal constituents from this system of eigenvectors. This approach al-
lows for a detailed analysis of the expansion coefficients of each free oscillation.
This analysis is performed firstly with respect to the resonance depth and the shape
factor, and secondly with respect to the amplitude and phase of the expansion co-
efficients. Resonance depth and shape factor uniquely characterize the expansion
coefficients, the former depending on the free oscillation period and on the forcing
period, while the latter is defined through the correlation of the adjoint eigenvector
with the forcing vector. The appearance of the delay of ocean tides by consideration
of the LSA is physically explained. The delay is due to the influence of LSA on the
phase of the resonance depths of near-resonant free oscillations. It is shown that this
phase delay is much larger for the semidiurnal than for the diurnal tides. Further, a
spectral composition in terms of free oscillations is performed of some well known
tidal features, e.g. in the diurnal tides, the Antarctic Kelvin Wave and the topograph-
ical trapping of a vorticity mode south of New Zealand and in the semidiurnal tides
the resonance in the Bay of Fundy - Gulf of Maine system.
Moreover, the synthesis procedure has been extended by a method including the
solutions of a tidal model with assimilation of data. This approach yields new ex-
pansion coefficients for the free oscillations. A new order of relevance of the modes
in the synthesis of the tides is found, and this analysis shows among other things
that the contributions of the modes are predominantly overestimated in free tidal
models. The data corrected coefficients lead to considerable improvement of tidal
oscillation patterns. Moreover nonlinear least squares fits have been performed to
compute improved frequencies and adjoint eigenvectors of certain free oscillations.
The results of the least squares fits are still not satisfying and there are some im-
provements to be made in order to obtain successful results.
The latter attempt to combine the obtained free oscillations of the World Ocean with
the results of ocean tide experiments with assimilation of data, in order to improve
the description of the oceanic oscillation behaviour, should be continued. More than
eight partial tides should be considered using this method and the large scale non-
linear least squares problem should be solved with a ”full” nonlinear solver.
Furthermore, improvements in the quality of the free oscillations could be achieved
through a refinement of the one degree grid. However, since the matrix is full
the memory requirement would rise with O(N3), N denoting the number of grid
points, e.g. this results in an increase of the required working memory from around
600GByte to 9.6TByte, for a refinement to a half degree resolution. The access to
supercomputers with this huge amount of working memory is currently problem-
atic. Thus, a local refinement of the model grid would be preferable in order to
save memory. The refined regions could comprise prominent topographical features
in the open ocean making possible a better representation of topographical trapped
vorticity modes.
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Fig. 5.1 Left: Normalized amplitudes of sea-surface elevations and lines of equal phases in de-
grees referred to 0◦ in (0.5◦N, 89.5◦W) (in steps of 45◦). Right: Energy flux vectors shown for
every fifth grid point, zonally and meriodionally. Squaring the magnitudes given yield these quanti-
ties in J/(sm). The energy flux vector at the top left has a magnitude of 202 J/(sm). The magnitude of
the energy flux is additionally color contoured. Top: The 7.87-mode with a decay time of 47.71 h.
Bottom: The 9.08-mode with a decay time of 34.90 h.
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Fig. 5.2 Information given as in Figure 5.1. The 9.77-mode with a decay time of 65.60 h (top) and
the 10.71-mode with a decay time of 71.89 h (bottom).
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Fig. 5.3 Information given as in Figure 5.1. The 11.38-mode with a decay time of 70.51 h (top)
and the 11.65-mode with a decay time of 62.68 h (bottom).
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Fig. 5.4 Information given as in Figure 5.1. The 11.77-mode with a decay time of 26.32 h (top)
and the 11.80-mode with a decay time of 20.78 h (bottom).
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Fig. 5.5 Information given as in Figure 5.1. The 11.89-mode with a decay time of 37.99 h(top)
and the 11.98-mode with a decay time of 68.38 h (bottom).
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Fig. 5.6 Information given as in Figure 5.1. The 12.36-mode with a decay time of 22.01 h (top)
and the 12.66-mode with a decay time of 37.6 h (bottom).
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Fig. 5.7 Information given as in Figure 5.1. The 12.67-mode with a decay time of 17.06 h (top)
and the 12.76-mode with a decay time of 60.77 h (bottom).
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Fig. 5.8 Information given as in Figure 5.1. The 13.37-mode with a decay time of 45.87 h (top)
and the 13.49-mode with a decay time of 28.58 h (bottom).
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Fig. 5.9 Information given as in Figure 5.1. The 13.86-mode with a decay time of 45.34 h (top)
and the 14.77-mode with a decay time of 14.14 h (bottom).
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Fig. 5.10 Information given as in Figure 5.1. The 16.89-mode with a decay time of 82.31 h (top)
and the 18.15-mode with a decay time of 49.82 h (bottom).
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Fig. 5.11 Information given as in Figure 5.1. The 18.48-mode with a decay time of 31.7 h (top)
and the 19.80-mode with a decay time of 73.02 (bottom).
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Fig. 5.12 Information given as in Figure 5.1. The 21.97-mode with a decay time of 36.47 h(top)
and the 22.75-mode with a decay time of 18.03 h (bottom).
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Fig. 5.13 Information given as in Figure 5.1. The 25.32-mode with a decay time of 19.79 h (top)
and the 26.20-mode with a decay time of 41.32 h (bottom).
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Fig. 5.14 Information given as in Figure 5.1. The 27.19-mode with a decay time of 17.81 h (top)
and the 27.57-mode with a decay time of 28.09 h (bottom).
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Fig. 5.15 Information given as in Figure 5.1. The 28.20-mode with a decay time of 32.44 h (top)
and the 32.64-mode with a decay time of 53.57 h (bottom).
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Fig. 5.16 Information given as in Figure 5.1. The 33.25-mode with a decay time of 25.27 (top)
and the 37.77-mode with a decay time of 42.6 h (bottom).
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Fig. 5.17 Information given as in Figure 5.1. The 41.22-mode with a decay time of 58.48 h (top)
and the 53.21-mode with a decay time of 67.61 h (bottom).
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Fig. 5.18 Information given as in Figure 5.1. The 64.36-mode with a decay time of 93.39 h (top)
and the 79.18-mode with a decay time of 72.18 h (bottom).
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Fig. 5.19 Examples for Antarctic Kelvin Waves: (a) First, (b) second and (c.) third order Kelvin
Waves travelling in counterclockwise direction around Antarctica. (Color contoured normalized
amplitudes of sea-surface elevation and solid lines of equal phases).
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Table 5.1 The gravitational normal modes in the period range 7.77-11.98 hours. The period
T2 = 2π

σ2
, the decay time T1 = 1

2σ1
, the period T p

2 of the corresbonding mode computed with pa-
rameterized LSA (if it exists), and the ratio between potential (Ep) and total (Et ) energy contents
is shown for each mode. Further, areas relative to the ocean area are given in per cent for Indian
Ocean (Ind), Pacific Ocean (Pac), Atlantic Ocean (Atl), Southern Ocean (Ant) and the North Polar
Sea (Np) directly below the abbrevations. The five columns below these abbrevations show the
total energy content of the corresponding ocean region relative to the total energy. The last column
shows the β -value times 100.

No. T2[h] T p
2 [h] T1[h] Ep

Et
[%] Ind Pac Atl Ant Np β ·100

18.7 46.6 23.2 8.5 3.0

1 7.77 38.91 47.4 27.1 40.2 18.2 14.2 0.3 5.41
2 7.81 28.56 49.5 53.6 17.6 22.3 5.9 0.6 4.83
3 7.87 47.71 46.9 24.1 50.9 12.3 12.7 0.1 5.91
4 7.91 8.03 21.74 49.9 6.5 7.6 79.9 5.8 0.2 4.34
5 8.06 8.12 55.60 46.7 10.0 51.7 15.5 22.7 0.1 5.83
6 8.08 21.24 48.2 4.2 24.2 61.2 9.6 0.8 4.14
7 8.15 8.22 36.24 47.3 4.5 71.9 6.8 16.8 0.1 5.64
8 8.16 19.62 49.0 2.0 94.1 1.7 2.1 0.0 4.50
9 8.26 15.07 49.8 4.1 5.5 81.9 3.4 5.2 2.82
10 8.29 8.41 30.18 48.5 10.6 31.5 37.6 19.0 1.2 4.78
11 8.37 28.46 49.3 8.9 28.0 45.4 15.6 2.1 4.73
12 8.47 24.21 50.3 6.5 12.7 64.4 12.6 3.8 4.29
13 8.66 8.72 57.52 47.3 2.0 86.4 2.8 8.8 0.0 6.63
14 8.74 8.88 29.19 49.2 22.1 8.9 53.7 12.3 3.1 4.93
15 8.88 8.98 49.75 48.7 9.6 57.5 15.3 17.0 0.6 5.83
16 8.98 31.13 49.1 16.6 7.5 59.4 14.0 2.5 5.08
17 9.08 9.12 34.90 47.0 3.5 87.6 4.9 3.7 0.2 6.41
18 9.22 9.25 87.21 43.5 8.1 60.7 7.6 23.4 0.2 6.89
19 9.42 9.50 42.69 46.1 58.1 14.6 17.9 8.9 0.4 6.23
20 9.42 16.86 49.3 1.0 98.2 0.1 0.6 0.0 3.82
21 9.43 67.21 44.8 17.0 54.6 11.2 17.0 0.2 6.89
22 9.66 15.83 50.0 1.8 97.3 0.1 0.7 0.1 3.55
23 9.77 9.82 65.60 46.5 27.6 36.4 23.5 11.9 0.5 6.79
24 9.82 18.87 48.9 2.1 96.9 0.2 0.8 0.1 4.29
25 9.82 24.46 49.7 1.3 10.5 79.6 1.5 7.0 4.96
26 9.94 10.02 33.17 44.3 3.4 6.9 78.5 11.0 0.2 5.46
27 10.27 10.32 96.52 45.2 40.4 20.0 30.8 8.8 0.0 7.31
28 10.71 10.75 71.89 46.9 20.2 55.8 16.4 7.6 0.1 7.37
29 10.88 10.87 35.10 47.2 8.6 87.3 1.9 2.2 0.0 6.78
30 10.98 11.03 66.09 46.7 39.9 35.2 12.0 12.8 0.1 7.20
31 11.38 11.37 70.51 44.3 30.1 56.7 4.7 8.5 0.1 7.83
32 11.65 11.65 62.68 45.7 33.0 33.5 10.2 23.1 0.2 6.94
33 11.77 11.88 26.32 47.6 6.3 16.1 60.2 14.4 3.0 5.17
34 11.80 20.78 50.4 2.0 94.2 0.9 2.8 0.1 4.28
35 11.89 11.96 37.99 45.9 14.6 24.7 40.7 18.9 1.1 5.86
36 11.98 68.38 46.6 3.5 79.9 1.8 14.7 0.0 7.49
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Table 5.2 The gravitational normal modes in the period range 12.36-79.18 hours. Remaining in-
formation given as in Table A.1.

No. T2[h] T p
2 [h] T1[h] Ep

Et
[%] Ind Pac Atl Ant Np β ·100

18.7 46.6 23.2 8.5 3.0

37 12.36 22.01 47.0 2.9 26.5 59.8 10.8 0.1 4.30
38 12.55 13.88 48.9 0.3 93.2 1.0 0.1 5.5 3.50
39 12.66 12.65 37.60 47.1 4.3 32.1 56.4 5.6 1.5 6.99
40 12.67 17.06 50.0 0.2 97.3 0.8 0.1 1.6 3.57
41 12.76 12.75 60.77 45.3 14.9 50.6 26.6 7.5 0.4 7.77
42 13.37 13.39 45.87 44.6 14.5 73.0 9.1 3.0 0.3 7.71
43 13.49 28.58 46.0 4.6 92.5 0.9 0.9 1.2 6.64
44 13.86 13.92 45.34 45.5 14.0 73.1 7.9 4.6 0.5 7.62
45 14.38 31.88 47.3 5.3 17.9 69.1 3.8 3.8 6.00
46 14.60 14.55 34.81 46.3 11.1 23.6 57.9 4.4 2.9 6.15
47 14.77 14.76 14.14 43.8 0.1 66.9 10.4 0.1 22.4 3.49
48 15.36 15.38 57.69 45.7 27.4 35.6 27.2 8.4 1.4 8.07
49 16.02 15.98 88.33 47.9 9.4 55.1 5.3 29.8 0.4 8.48
50 16.39 16.31 33.63 48.0 6.0 89.9 2.1 1.1 0.9 7.12
51 16.89 16.81 82.31 44.1 29.3 19.5 21.8 27.6 1.8 8.97
52 18.15 18.04 49.82 46.7 22.5 49.0 17.0 8.3 3.2 8.25
53 18.48 31.70 47.7 11.9 78.1 5.8 2.1 2.2 6.43
54 19.50 19.61 20.30 42.4 0.2 5.3 46.8 1.1 46.6 5.32
55 19.80 73.02 45.4 64.5 24.6 6.4 3.1 1.4 9.03
56 19.92 20.26 23.07 50.7 1.2 97.9 0.3 0.1 0.5 4.90
57 21.08 21.21 30.76 49.9 14.4 73.5 8.2 0.9 3.0 7.47
58 21.97 21.71 36.47 49.3 17.6 58.2 17.4 2.2 4.6 8.57
59 22.75 23.00 18.03 39.3 0.3 3.7 67.7 0.9 27.4 5.13
60 25.32 19.79 50.6 1.0 98.2 0.5 0.1 0.2 6.61
61 26.20 25.76 41.32 44.7 10.9 57.7 23.7 4.4 3.3 10.17
62 27.19 17.81 46.7 1.2 98.3 0.2 0.2 0.2 5.43
63 27.57 27.66 28.09 26.0 0.9 66.9 22.0 6.5 3.6 7.76
64 28.20 28.15 32.44 27.3 6.7 58.2 26.2 4.9 4.0 9.24
65 32.64 31.73 53.57 43.4 8.0 39.0 4.2 48.5 0.3 11.91
66 33.25 33.26 25.27 40.1 2.1 2.1 72.4 14.7 8.7 8.34
67 37.77 37.05 42.60 36.0 12.2 41.0 21.0 24.4 1.4 11.50
68 41.22 40.01 58.84 42.2 9.9 66.3 18.6 4.1 1.1 13.39
69 53.21 51.72 67.61 34.1 13.0 33.2 45.7 6.2 1.9 14.21
70 64.36 63.57 93.39 20.6 6.1 74.3 17.1 2.2 0.3 13.54
71 79.18 77.82 72.18 18.6 16.2 41.0 33.0 9.7 0.1 14.39
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Phase Delay

The resonance depth of the kth-mode is defined as Rk = 1
σk,1+i(σk,2−σF ) . We can

rewrite the resonance depth in the form:

Rk =
1√

σ2
k,1 +

(
σk,2−σF

)2
· ei·φk . (5.1)

The phase ϕk is given by ϕk = arctan
(
−σk,2−σF

σk,1

)
. With the assumption that for

the phase delay induced by the LSA, the change in the oscillatory frequency part
δσk = σ

(LSA)
k,2 −σ

(noLSA)
k,2 plays the major role, we set δσk = σ

(LSA)
k,1 −σ

(noLSA)
k,1 = 0.

Thus, we obtain with the identity arctan(x)−arctan(y) = arctan
(

x−y
1+xy

)
:

δϕk = ϕ
(LSA)
k −ϕ

(noLSA)
k =

arctan

 σ
(noLSA)
k,2 −σ

(LSA)
k,2

σk,1

(
1+(σ (noLSA)

k,2 −σF)(σ (LSA)
k,2 −σF)/σ2

k,1

)
 (5.2)



List of Symbols

a angular distance
ak expansion coefficient of the k-th

free oscillation
a(a)

k assimilated expansion coefficient of
the k-th free oscillation

A complex Matrix of dimension nxn
Ah [m2s−1] kinematic eddy viscosity for the

horizontal direction
αn normalized density ratio
β global measure for the LSA effect
βL local measure for the LSA effect
Ck shape factor of the k-th free oscilla-

tion
D [m] undisturbed ocean depth
δ [m] elevation of sea bottom
el l-th unit vector of length n
Ek [Jm−2] mean kinetic energy
E p [Jm−2] mean potential energy
Et [Jm−2] mean total energy
f [s−1] vector of Coriolis acceleration
F [ms−2] vector of second-order eddy viscos-

ity term
F̃ external tidal forcing
φ [deg] or [rad] geographic latitude
Φ [m2s−2] potential due to the self-attraction

effect
Φ∗ [m2s−2] potential due to the loading and

self-attraction effect
δφk [deg] or [rad] LSA induced phase delay
g [ms−2] surface gravity of a spherical earth
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G Green-function of loading and self-
attraction

γ [m3s−2kg−1] gravitational constant
hn,kn nonloading Love numbers
h′n,k

′
n loading Love numbers

Hk upper Hessenberg matrix
Ju [J(ms)−1] zonal time-mean energy flux
Jv [J(ms)−1] meridional time-mean energy flux
δKR spherical layer of radius R
Kk k-th Krylov subspace
Lsek [ms−2] vector of secondary force of the

loading and self-attraction
L Operator derived through the shal-

low water equations
L0 Operator L without LSA-term
λ [deg] or [rad] geographic east longitude
ω [s−1] rotational angular velocity of the

earth
Pn,s normalized Legendre polynomials

of degreen n and order s
r residual for the eigen-pair
r′ [ms−1] coefficient of linear bottom friction
R [m] mean radius of the earth
Rk [s] resonance depth of the k-th free os-

cillation
ρ [kgm−3] density of sea water
ρO [kgm−3] mean density of sea water
ρe [kgm−3] mean density of solid earth
t [s] time
u [ms−1] zonal current velocity
ul l-th basis vectors ofKk with length

n
v [ms−1] meridional current velocity
v [ms−1] horizontal current velocity vector
vk k-th eigenfunction
v̂k k-th adjoint eigenfunction
v̂(a)

k assimilated k-th adjoint eigenfunc-
tion

x eigenvector of A
θ [s−1] Ritz value
σ [s−1] complex eigenfrequency of free os-

cillation
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σ0 [s−1] first-guess eigenfrequency
σ1 [s−1] damping rate of free oscillation
σ2 [s−1] oscillationary part of the complex

eigenfrequency σ

σ
(a)
k [s−1] assimilated frequency of k-th free

oscillation
T1 [s] damping rate of free oscillation
T (a)

1 [s] assimilated damping rate of free os-
cillation

T2 [s] period of free oscillation
T (a)

2 [s] assimilated period of free oscilla-
tion

ζ [m] sea surface elevation
ζ [m] equilibrium tide of the secondary

potential of LSA
ζn [m] n-th degree spherical harmonic con-

stituent of ζ

ζ0 [m] geocentric sea surface elevation
ζ∗ [m] complex conjugate of ζ
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Antarctic Kelvin Wave, 30, 52
Arnoldi factorization, 19
Arnoldi Method, 19, 30

eigenfunction
adjoint, 59, 61

eigenvalue, 18
eigenvector, 18, 40
energy, 26

balance, 14
circum-global flux, 31
equation, 14
flux, 16
kinetic, 15
potential, 15

equation of motion and continuity, 11
expansion coefficient, 40, 42

assimilated, 55
diurnal tides, 52, 66
semidiurnal tides, 50, 61

free oscillations, 23–38

geocentric sea level, 8
Green’s function, 3, 13, 18

Implicitly Restarted Arnoldi Method, see
Arnoldi Method

integro-differential equation system, 13
inverse Method, see Wielandt Method

Krylov subspace, 19

Lanczos Method, 19
Laplace-equations, 16
Levenberg Marquardt Algorithm, 60
loading, 10

Love-numbers
loading, 10, 17
nonloading, 44

LSA, 7
effect, 8–11, 23, 24, 32, 35, 45
frequency shift, 25, 32, 45
parameterization, 12, 16, 23, 24
phase delay, 46, 107

LU-solver, 21

modes
gravitational, 23–31
new gravitational, 30
planetary vorticity, 34
slowest gravitational, 31
topographical vorticity, 32
vorticity, 32–38

New Zealand Kelvin Wave, 30
normal modes, see free oscillations

orthogonality relation, 41, 42

parallelization, 21
performance, 22
phase delay, 48, 49

resonance curve, 60
resonance depth, 41, 45

diurnal tides, 49
semidiurnal tides, 48, 50

self-attraction, 9
shallow water equations, 7, 16, 110
shape factor, 41, 44, 45

diurnal tides, 49, 52
semidiurnal tides, 46, 50
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spherical harmonics, 8
synthesis of forced oscillations, 39–71
synthesized tide, 44

assimilated, 56

tidal constituent, 17, 42
tidal force, 42
topographical trapping, 29, 30

Kerguelen Plateau, 30
Faeroe-Island Ridge, 34
Falkland Plateau, 31
Kerguelen Plateau, 32
New Zealand Plateau, 29, 30, 32
Reykjanes Ridge, 31

Wielandt Method, 18, 23
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